EXPLORING THE ROLE OF ICT USAGE AND COLLABORATIVE CLIMATE ON EXPLICIT KNOWLEDGE SHARING BEHAVIOR OF CHINESE UNIVERSITY STUDENTS

PhD Research Fellow, Wuhan University of Technology and Assistant Professor, Department of Management, Jagannath University[1]; Associate Professor, Department of Marketing, Jagannath University[2], Professor, School of Management, Wuhan University of Technology[3] Associate Professor, Department of Marketing, Bangladesh University of Professionals[4]
Lizakhanam2014@yahoo.com[1], mahfuz@mkt.jnu.ac.bd[2] and qyjhb@163.com[3], zaheddu2000@yahoo.com[4]

ABSTRACT
The numbers of international students studying in China are increasing day by day. Usually, local students of most of the countries are afraid of exchanging knowledge with different students from diverse cultural backgrounds. For this reason, it is a necessity to investigate the factors affecting the knowledge sharing behavior that support students' group work and learning activities of the Chinese students towards the international students. However, identifying the factors influencing the knowledge sharing behavior for the local students to international students in a university happens to be a daunting ask. Thus, this study aims to examine the influence of some selected factors on explicit knowledge sharing behavior. Specifically, this study endeavors to assess the role of Information & Communication Technology (ICT) use and collaborative climate on explicit knowledge sharing behavior. The researchers restored to the Theory of Planned Behavior (TPB) for the said assessment. Data were collected from 220 valid respondents by conducting field survey with a structured questionnaire. The collected data were regressed through Partial Least Square approach (PLS). The overall findings revealed that attitude toward knowledge sharing and perceived behavior control factors positively impact the behavior intention; however, subjective norms seemed to have a negative impact on behavioral intention. On the other hand, the level of ICT usages and collaborative climate positively influence the explicit knowledge sharing behavior of the Chinese students.

Key Words: Explicit knowledge sharing, Behavior intention, level of ICT usages, Collaborative climate

1.0 INTRODUCTION
In recent years, knowledge sharing happens to be the most important intangible resource for the organization (Al-Busaidi, Olfman, Ryan, & Leroy, 2010). Knowledge sharing activities helped individual to exchange their views, skills, or expertise among people, friends, families, communities, or organizations. According to Ghadirian, Ayub, Silong, Bakar, and Zadeh (2014), if individuals share their knowledge, they become capable to re-adapt and recreate innovative knowledge by opening up multiple viewpoints of peers' perspectives. However, knowledge sharing not only enhances benefit for commercial organization but also fosters benefits for non-profit organization, such as, higher education institutes (Nassuora, 2011). University is the best non-profit institute where students and teachers engage in generating and disseminating knowledge to their stakeholders (Howell & Annansingh, 2013). Knowledge-sharing between local and international students facilitates the university in fulfilling new research related needs and reduce research budget. Interestingly, most of the universities face the challenge of knowledge creation and sharing (Khosravi, Ahmad, & Sedera, 2014). Students in the university try to generate their own knowledge instead of spreading this knowledge to other (Hawkins, 2006; Kim and Ju, 2008). Shafieiyoun and Safaei (2013) found that
students are unwilling to share their knowledge unless there are obvious benefits for themselves; explicit knowledge sharing behaviour to other students break down these obstacles. Furthermore, there is a large volume of published studies describing that knowledge sharing is essential for the students because the recipient may potentially use knowledge to perform his or her task(s) in a better manner (Ma & Chan, 2014; Majid & Wey, 2009). Several studies have revealed that knowledge sharing improves students’ learning capability and/or helps to develop close relationships with partners for accomplishing the course work properly (Chikoore & Ragsdell, 2013; Darling-Hammond & McLaughlin, 1995; Hmelo-Silver, 2004). More ever, factors affecting knowledge sharing among employees have been gaining attention among researchers for the last twenty year; unfortunately, little attention was paid for understanding the reason behind knowledge sharing among the students in the university (Chang & Chu, 2014; Ghadirian et al., 2014; Harmening & Jacob, 2015; Howell & Annansingh, 2013). Most of the available studies on that subject matter have been conducted in the context of knowledge sharing practice (Chikoore & Ragsdell, 2013; Osman, Sauid, & Azizan, 2015). In specific content, very few research were conducted on Chinese students’ knowledge sharing behavior with international students, and those studies were conducted outside China (Howell & Annansingh, 2013; Sohail & Daud, 2009; Chris & Arthur, 2014). On the other hand, the effect of ICT usage on knowledge sharing is numerically investigated on the employee in an organization (Chatzoglou & Vraimaki, 2009; Hendriks, 1999) and this concept was tested empirically on Chinese undergraduate students, within their own group in Hong Kong (Ma & Chan, 2014). In addition, the influence of collaborative climate on knowledge sharing was investigated considering the employees (Sveiby & Simons, 2002). Hendrix (2007) points out that knowledge sharing climate is vital for the staff for ensuring better performance inside an organization. Khosravi et al. (2014) indicated that the ability of students to share knowledge inside a group depends on the supportive culture by the university authority, proper supervisor support, learning strategy, knowledge-sharing, social networks and IT systems. To add, over the last twenty years, as a result of the globalization worldwide, the number of international students’ academic mobility in China increased in an escalated manner (Bhandari & Blumenthal, 2013; Howell & Annansingh, 2013). Yet, there are still gaps in recognizing how collaborative climate, IT system, student’s knowledge sharing attitudes, social factors and perceived behavioral control factor influence the regional students’ knowledge sharing behavior with the international students in China. Therefore, based on the above literature review, the following research questions are formulated in this study:

• What are the key factors inspiring Chinese student’s explicit knowledge sharing behavior to international students in China? Does ICT usage and collaborative climate in the university affect Chinese students’ knowledge sharing behavior with the international students?

Thus, the specific research objectives are to:

• develop conceptually an extension of the Theory of Planned Behavior (TPB) for identifying causes of Chinese students’ explicit knowledge sharing behavior towards international students in China;

• examine how students’ ICT usage and collaborative climate influences on knowledge sharing behaviour;

• provide suggestions for university authority so that they can motivate students for knowledge sharing with international students and to provide suggestion to reduce weaknesses in the former studies regarding knowledge sharing.

The researchers have organized our study as follows. The following section is a fact-finding section, which is based on theoretical framework and previous research work in different country. Second section encompasses literature review and third section explains how to develop proposed research model and hypotheses for proving the model. Fourth section discusses the methodology of the research work and fifth section elaborates and analyse survey result. The last section concludes our study with future direction.

2.0 LITERATURE REVIEW

2.1 Explicit Knowledge-Sharing:
There have been several studies in the literature reporting concept of Knowledge sharing. Numerous studies have attempted to explain knowledge sharing as sharing information and
as know-how to help others expertise, as well as to collaborate with others to solve problems, cultivate new ideas, or implement policies or procedures (Cummings, 2003; Hendrix, 2007). According to Cheng, Ho, and Lau (2009), there are two ways by which individual share knowledge: a) person-to-person sharing model where an individual has the freedom to decide the mode of sharing topic and choose partners to share his or her knowledge with close touch, and b) open-network sharing or explicit knowledge sharing through the internet within the virtual group. A number of studies have found that people share knowledge in two ways, in explicit and in tacit format (Davies, 2014; Osman, Saidu, & Azizan, 2015). Chumg, Cooke, Fry, and Hung (2015) state that tacit knowledge sharing is occurred by the individual when they share their ideas, skills, values and mental point of view to other employees; on the other hand, explicit knowledge sharing occurred by the employee when they share their written formatted report, journal, documents and patent. Nassuora (2011) describes that explicit knowledge can be shared in meetings through documents, emails. Osman et al. (2015) suggested that knowledge sharing is identified as a way through which students exchange their explicit or tacit knowledge to other students in a university, department or a group. Moreover, explicit knowledge sharing always helps students to improve their knowledge, learning; consequently, by which they can understand course matter properly (Högberg & Edvinsson, 1998).

2.2 ICT Usage:
ICT is the combination of informatics technology specifically communication technology such as, e-mail, website, phone, web-based conference tools & communication (WebEx, Skype, and GoToMeeting), different types of social media (Resta & Unesco, 2002). Nowadays, the educational institution uses the internet, information system and various types of technology as a medium of modern learning and conduit of knowledge transfer to the students (Dukić, Dukić, & Kozina, 2012). Hendriks (1999) found that using different types of technology and information system enhance knowledge sharing capability of the individual and reduce cost inside the organization. According to Nassuora (2011), using technology for knowledge sharing helps to create new knowledge and to capture and organize this knowledge systematically for further use. Bathaei and Hosseini (2014) have also agreed that ICT system provide technologies to enhance KM practices in a university. Jahan and Ahmed (2012) have added that social networking sites and latest technologies can play an important role for enhancing students’ learning capability in the academic institutions. Additionally, Dukić et al. (2012) have stated that multimedia learning resources were developed to facilitate knowledge sharing among the students in a class.

2.3 Collaborative Climate:
Chatman and Flynn (2001) defined collaborative climate’ as an organizational culture where organization promotes effective teamwork for coordinating all tasks in the organization, by which they can achieve their organizational goal easily. According to Sveiby and Simons (2002), the flow of knowledge sharing depends on developing mutual trust among colleagues, building good relation with the supervisor, and ensuring organizational and team support. Khosravi, Ahmad, and Sedera (2014) has demonstrated that having proper team supervisor, a flexible working environment in a diverse work group and a development culture in a university inspire students to generate and share new knowledge. Ciganek, Mao, and Srite (2010) noted that Organizational climate factors, such as open communication, mutual confidence and trust in a group member and management support had a significant impact on peoples’ intention to share knowledge.

2.4 Theory of Planned Behaviour:
Most popular conceptual Theory of Planned Behavior was postulated by Ajzen (1985); this model was actually an extension of his other popular idea: Theory of Reason Action Behavior (TRA) (Fishbein & Ajzen, 1975). In the Theory of Planned Behavior (TPB) the author tried to demonstrate the relationship between human behavior and attitude with subjective norms in specific situations. Later on, author added the additional construct of perceived behavioral control, where the author tried to show relationship
of perceived behavioral control, indirectly with behavior intention and directly with behavior (Ajzen, 1991). However, after 1985 numerous studies attempted to forecast and explain various human behaviors adopting information systems in social-psychology research area with the help of TPB (Ajzen, 1985; Chow, Deng, & Ho, 2000; Chumg et al., 2015; Hendriks, 1999; Ryu, Ho, & Han, 2003; Wang & Noe, 2010). With the same objective, many authors also conducted numerical experiments on factors affecting knowledge-sharing behavior among the students, with the help of TPB (Chikoore & Ragsdell, 2013; Chumg et al., 2015; Ghadirian, Ayub, Silong, Bakar, & Zadeh, 2014; Howell & Annansingh, 2013; Osman et al., 2015). Furthermore, based on above circumstance, we choose TPB as a base model to identify the factors of Chinese students’ knowledge sharing with the international students in China.

3.0 RESEARCH MODEL AND HYPOTHESES:
The present study attempts to systematically identify the direct effect of ICT usage and collaborative climate on their explicit knowledge-sharing behavior in a university for the Chinese students. Fig. 1 and Table 1 below represent the proposed model and operational definitions of the constructs of this research respectively.

Fig 1. Proposed model for factor affecting KS

Table 1: Operational Definitions of Proposed factor affecting KSB

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Items</th>
<th>Adapted from</th>
</tr>
</thead>
</table>
| Attitude toward knowledge sharing (KATUT) | The degree to which the individual has feelings subsequent of knowledge sharing with another student, such as positive or negative feelings, harmful or beneficial feelings, pleasant or unpleasant feelings, and likable or unlikable feeling. | KATUT1: For me to perform knowledge sharing with international students is good
KATUT2: For me to perform knowledge sharing with international students is beneficial
KATUT3: For me to perform knowledge sharing with international students is valuable | (Ajzen, 1991) |
| Subjective norms | The students’ perceived expectation of other student feelings regarding the knowledge sharing. | SN1: People who influence my behavior (e.g. Supervisor, team member, etc.) think that I should share my knowledge with international students
SN2: People who are important to me (e.g. Supervisor, team member, etc.) think that I should share my knowledge with international students
SN3: People whose opinions I value (e.g. Supervisor, team member, etc.) would approve sharing my knowledge with international students
SN4: It is expected (e.g. by supervisor, team member, etc.) of me that I should share my knowledge with international students | (Ajzen, 1991) |
| Perceived behavior control (PBC) | Judgments of PBC are influenced by beliefs concerning whether one has access to the necessary resources and opportunities to perform the behaviour successfully, weighted by the perceived power of each factor to facilitate or inhibit behaviour. | PBC1: It is possible for me to share my knowledge with international students
PBC2: If I wanted, I could share my knowledge with international students
|--------------------------------|---|---|
| Intention to share knowledge (BI) | The degree to which a certain individual believes that she/he engage in knowledge sharing act. | BI1: I intend to share my knowledge with international students in the university
BI2: I plan to share my knowledge with international students in the university
BI3: I will share my knowledge with other international students in the university, in near future
| Explicit Knowledge sharing behavior (Ex.Ks.B) | Explicit knowledge sharing denotes written form of knowledge sharing with other students, either hard or soft copy, such as, technical or academic data, journals, manuals, documents and copyrights. | How frequently do you use the following knowledge with your university members? Explicit knowledge
Ex.Ks.B1. Reports, official documents
Ex.Ks.B3 .Know-where, know-whom
| Collaborative climate (CC) | Collaborative climate refers to shared elements of an organization’s culture that inspires student to share knowledge | CC1: My organization has the appropriate technology in place (e.g. Academic portal, web site, e-mail) to Support knowledge sharing.
CC2: My organization has processin place (e.g. Meeting, colloquium, intellectual discourse session, etc.) for knowledge sharing.
CC3: My organization supports forming informal networks (e.g. Community of practice) where knowledge sharing can exercised.
(Sveiby and Simons, 2002). |
| Level of ICT usage (ICT) | The degree of one’s frequently using IT | How frequently do you use the following IT plat forms share your knowledge?
ITU1 chatroom
ITU2E-mail
ITU3Electronic document management system
ITU4Webpage
Bock and Kim (2000, 2002), Bock and Pan |
3.2.1 Attitude Toward Knowledge Sharing (KATUT) and Intention to Share Knowledge (BI):
The effect of knowledge sharing attitude on intention to share knowledge is numerically investigated by many researchers for identifying cause of knowledge sharing in an organization based on TPB (Ajzen, 1985, 1991; Ajzen & Fishbein, 1980; Amayah, 2013; Chatzoglou & Vraimaki, 2009; Chen, Chen, & Kinshuk, 2009; Law & Ngai, 2008; Madden, Ellen, & Ajzen, 1992; Teh, Chong, Yong, & Yew, 2010). Recently, researchers have also shown an increased interest to study the effects of attitude toward knowledge sharing on intention to share knowledge in an educational institution (Cheng et al., 2009; Reychav & Weisberg, 2010). The survey result shows that both academic staff’s and students’ attitudes about knowledge sharing reflect their willingness to be involved in the process of knowledge sharing with another person. Therefore, it seems that one of the important facets of knowledge sharing intention is the attitude toward knowledge sharing. Therefore, our first hypothesis is:

H1: Chinese students’ attitude toward knowledge sharing has a positive influence on his/her intention to share knowledge with the international students.

3.2.2 Subjective Norms (SN) and Intention to Share Knowledge (BI):
Subjective norms reflect personal views or opinions regarding whether their particular behavior is accepted or rejected, encouraged or discouraged, and implemented or not by the inspiration from the people from a specific social or group circle (Ajzen, 1985, 1991; Ajzen & Fishbein, 1980; Jabbary & Madhoshi, 2014). Most of the prior literature showed a positive relationship between subjective norms and intention to share knowledge, in an organization. (Ajzen, 1985, 1991; Ajzen & Fishbein, 1980, 2005; Armitage & Conner, 2001; F. Y. Kuo & M. L. Young, 2008). Moreover, in an educational institution, researcher also pointed out positive influence on intention to share knowledge (Jolaei, Md Nor, Khani, & Md Yusoff, 2014). So, our proposed second hypothesis is:

H2: Chinese students’ subjective norms have a positive influence on intention to share knowledge with the international students.

3.2.3 Perceived behavior control (PBC) and Intention to Share Knowledge (BI):
Perceived behavior control means a judgment of the people regarding easiness or hurdle related to performing the knowledge-sharing behavior (Chatzoglou & Vraimaki, 2009). According to the TPB model (Ajzen, 1991), Perceived Behavior Control (PBC) have positive effects on intention to share knowledge in an organization, as attitudes and subjective norms variables have on the same. Many authors examine the relationship between PBC and intention to share knowledge in an organization and educational institution (Ajzen, 1985, 1991; Ajzen & Fishbein, 1980, 2005; Campbell, 1981; Chatzoglou & Vraimaki, 2009; Conner & Armitage, 1998; Kwok & Gao, 2005; Madden et al., 1992; Ryu et al., 2003; Tohidinia & Mosakhani, 2010). Thus, the third hypothesis for the proposed model is:

H3: Chinese students’ perceived behavior control have a positive influence on intention to share knowledge with the international students.

3.2.4 Intention to Share Knowledge (BI) and Explicit Knowledge Sharing Behavior (Ex. Ks.B):
Explicit knowledge means academic or technical knowledge that is described in formal language, which can be communicated through print or electronic media; such as, manuals, mathematical expressions, copyright and patents (Davies, 2014). The TPB model has been used by many scholars to examine the relationships between intention and actual behavior of knowledge sharing (F.-Y. Kuo & M.-L. Young, 2008; Reychav & Weisberg, 2010). Consequently, the fourth hypothesis for our proposed model happens to be:

H4: Chinese students’ intention to share Knowledge have a positive influence on explicit Knowledge sharing Behavior with the international students.

3.2.6 Level of ICT Usage (ICT) and Explicit Knowledge Sharing Behavior (Ex.Ks.B):
Nowadays, tendencies to use ICT inside the organization push to remove all information
Exploring the Role of ICT Usage and Collaborative Sharing Barriers for Fostering Knowledge Sharing Activities (Alamgir & Ahmed, 2011). Information and Communication Technology (ICT) refers to technologies and information systems, such as, the internet, intranets, extranets, ERP and other such technologies that improve knowledge sharing behavior (Gupta, Dasgupta, & Gupta, 2008). Many researchers have argued that information technology has a significant impact on knowledge sharing behavior of the students (Dukić et al., 2012; Ismail, 2010; Mazman & Usluel, 2009; Omona, van der Weide, & Lubega, 2010). As a result, the fifth hypothesis for our proposed model pans out as:

H5: Chinese students’ level of ICT usage have a positive influence on explicit Knowledge Sharing behavior with the international students.

3.2.6 Collaborative Climate (CC) and Explicit Knowledge Sharing Behavior (Ex.Ks.B):

Previous researches have shown that knowledge sharing within a supportive environment increase sharing capability. Collaborative work climates inspire individual to improve their interpretations of tasks, work processes, and expectation within the group; end of the day, which enhance group performance (Sveiby & Simons, 2002). There have been several studies in the literature reporting relationship between collaborative climate and knowledge sharing behavior of the employee, yet, very few investigations were conducted to understand the impact of collaborative climate on knowledge sharing behavior for the students. Following this gap, the sixth hypothesis for our proposed model is:

H6: Chinese students’ collaborative climate have a positive influence on explicit knowledge sharing behavior with the international students.

4.0 RESEARCH METHODOLOGY AND INSTRUMENT DEVELOPMENT

This study is quantitative in nature and is classified as an experimental study (Kumar, 2009, p. 126). It is designed by employing a 22-items-questionnaire pillared on the model of TPB extension. The population for our study involved all Chinese university students. To test the hypotheses, convenience sampling method was used for collecting data; in total 220 respondents from Wuhan University of technology, China, were surveyed. Kumar (2009) suggested that convenience sampling is most appropriate and cost effective for collecting data when survey period is of short time. We distributed our questionnaire among 350 students in different departments; however, the response rate was 63% percent only; 220 usable complete copies of responds were received after two months. According to Marcoulides and Saunders (2006), to test the structural equation model for 5 latent variables, minimum 70 responders are required. However, many researchers note that there is a rule of thumb stating the requirement of only 10 cases for approaching an analysis of SEM (Chin, 1998; Hair, Ringle, & Sarstedt, 2011; Wong, 2013). The questionnaire had 3 sections. The first section of the questionnaire was used to collect demographic information about the Chinese students’. Second and third section were based on factors that affect Chinese students’ knowledge sharing behavior with the international student. Twelve items were borrowed from the original TPB model (Ajzen, 1991), those are attitude toward knowledge sharing (KATUT) (3 items), subjective norms (SN) (4 items), perceived behavior control (PBC) (2 items), intention to share knowledge (BI) (3 items); additionally another 4 items related to the level of ICT usage (ICT) were taken from the studies of Bock and Kim (2000, 2002); again, collaborative climate (CC) (3 items) were taken from Sveiby and Simons(2002). To assess explicit knowledge sharing behavior (Ex.Ks.B) 3 items were taken from the works of Bock and Kim, 2002; Lee, 2001; Ryu et al., 2003; Lin and Lee, 2004 .For part B, the survey instrument has a 5-point Likert scale, ranging from (Scale –1 Very rarely to 5 – very frequently) and part C possesses a 5-point Likert scale ranging from 1 (strongly disagree) to 5 (strongly agree). SPSS (Statistical Package for Social Science) 21 version and Smart PLS 2.0 M3 were used for investigating relationships, which is well-defined by the proposed model. According to Goodhue, Lewis, and Thompson (2006), to analyze small sample size to study in the field of Management Information Systems (MIS) and social science, Partial Least Squares (PLS) approach is an appropriate technique for analyzing than multiple regression and LISREL.
5. DATA ANALYSIS:
5.1 Characteristics of respondents:

The following table is depicting results (descriptive analysis) about the nature of the respondents in a summarized way:

Table 2. Demographic Profile of Respondents

<table>
<thead>
<tr>
<th>Demography</th>
<th>Frequency</th>
<th>Percentage</th>
<th>Demography</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Above 15</td>
<td>190</td>
<td>90.48</td>
<td>Male</td>
<td>145</td>
<td>69.05</td>
</tr>
<tr>
<td>Above 25</td>
<td>30</td>
<td>14.29</td>
<td>Female</td>
<td>65</td>
<td>30.95</td>
</tr>
<tr>
<td>Educational level</td>
<td></td>
<td></td>
<td>Knowledge sharing experience</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary high school</td>
<td>0</td>
<td>0</td>
<td>Less than 6 months</td>
<td>11</td>
<td>5.2</td>
</tr>
<tr>
<td>Associate degree</td>
<td>0</td>
<td>0</td>
<td>6 months–1 year</td>
<td>105</td>
<td>50</td>
</tr>
<tr>
<td>Undergraduate degree</td>
<td>144</td>
<td>68.57</td>
<td>1 year–2 years</td>
<td>60</td>
<td>28.57</td>
</tr>
<tr>
<td>Graduate degree</td>
<td>63</td>
<td>30.0</td>
<td>2 years–3 years</td>
<td>18</td>
<td>8.57</td>
</tr>
<tr>
<td>Doctoral degree</td>
<td>03</td>
<td>1.43</td>
<td>Over 3 years</td>
<td>16</td>
<td>7.62</td>
</tr>
</tbody>
</table>

5.2 Measurement Reliability and Validity Assessment

Many researchers have argued that they can test item loadings and cross-loadings through the Smart-PLS software for measuring construct reliability and validity of the collected data (Hair et al., 2011; Henseler, Ringle, & Sinkovics, 2009; Peng & Lai, 2012). Recently researcher have used composite reliability (CR) insisted of Cronbach’s alpha for estimating reliability or internal consistency, based on latent variables in PLS structural equation models (Ahlemann, 2010; Wong, 2013). In experimental research, range of 0.60 to 0.70 is considered as acceptable values for the composite reliability (CR) test, and above 0.70 is considered satisfactory (Henseler et al., 2009). Thus, composite reliability values for this study were satisfactory, since all the values were above 0.70. The calculated value of CR (ranging from 0.876 to 0.957) is more than the accepted value. Consequently, all factor loadings, as well as the average variance extracted (AVE), were identified for evaluating the convergent validity and discriminant validity. F. Hair Jr, Sarstedt, Hopkins, and G. Kuppelwieser (2014) prescribed that outer factor loadings above 0.70 or higher are preferred; for exploratory research 0.4 or higher is acceptable and the acceptable value for each construct’s average variance extracted (AVE) is 0.50 or higher.. For this study, most of the outer loadings were acceptable, since those were above 0.70. AVE values in this study stand from 0.644 to 0.882, which are more than 0.50. Therefore, both validity and reliability analyzes suggest that these constructs are valid and reliable for further advanced analysis (Hair et. al, 2014). The following table summarizes the findings for factor loadings, CR and AVE:

Table 3: Result of Measurement Model

<table>
<thead>
<tr>
<th>Construct</th>
<th>Items</th>
<th>Loadings</th>
<th>Cronbach's Alpha</th>
<th>Composite Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intention to share Knowledge (B1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B11</td>
<td></td>
<td>0.841</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B12</td>
<td></td>
<td>0.917</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B13</td>
<td></td>
<td>0.858</td>
<td>0.843</td>
<td>0.905</td>
</tr>
</tbody>
</table>
According to Hair et al. (2011), Discriminant validity is assessed by AVE with the square of the correlations among constructs. Table 4 below shows the result of the square root of the AVE, given in the diagonals, which are higher than the correlation among the constructs. Gefen and Straub (2005) suggested that square root of the AVE of each construct needs to be much larger (no clear guideline regarding the largeness), than any correlation between this construct and any other construct. This result indicates that there remains a further strength of discriminant validity in our current study. Moreover, it validates that the constructs met the accepted criteria.

<table>
<thead>
<tr>
<th>Collaborative climate (CC)</th>
<th>CC1</th>
<th>0.855</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CC2</td>
<td>0.869</td>
</tr>
<tr>
<td></td>
<td>CC3</td>
<td>0.819</td>
</tr>
<tr>
<td>Explicit Knowledge sharing behavior (Ex.Ks.B)</td>
<td>EX.KS_B2</td>
<td>0.947</td>
</tr>
<tr>
<td></td>
<td>EX.KS.B1</td>
<td>0.943</td>
</tr>
<tr>
<td></td>
<td>EX.KS.B3</td>
<td>0.927</td>
</tr>
<tr>
<td>Level of ICT usages (ICT)</td>
<td>ICT1</td>
<td>0.897</td>
</tr>
<tr>
<td></td>
<td>ICT2</td>
<td>0.917</td>
</tr>
<tr>
<td></td>
<td>ICT3</td>
<td>0.896</td>
</tr>
<tr>
<td></td>
<td>ICT4</td>
<td>0.904</td>
</tr>
<tr>
<td>Attitude towards Knowledge sharing (KATUT)</td>
<td>KATUT1</td>
<td>0.860</td>
</tr>
<tr>
<td></td>
<td>KATUT2</td>
<td>0.859</td>
</tr>
<tr>
<td></td>
<td>KATUT3</td>
<td>0.873</td>
</tr>
<tr>
<td>Subjective norms (SN)</td>
<td>SN1</td>
<td>0.928</td>
</tr>
<tr>
<td></td>
<td>SN2</td>
<td>0.835</td>
</tr>
<tr>
<td></td>
<td>SN3</td>
<td>0.814</td>
</tr>
<tr>
<td></td>
<td>SN4</td>
<td>0.596</td>
</tr>
<tr>
<td>Perceived behavior control (PBC)</td>
<td>PBC1</td>
<td>0.934</td>
</tr>
<tr>
<td></td>
<td>PBC2</td>
<td>0.881</td>
</tr>
</tbody>
</table>

Table 4. Discriminant Validity Analysis

<table>
<thead>
<tr>
<th>BI</th>
<th>CL</th>
<th>EXKS</th>
<th>IT</th>
<th>KATUT</th>
<th>PB</th>
<th>SN</th>
<th>AVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI</td>
<td>0.873</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CL</td>
<td>0.125</td>
<td>0.848</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.719</td>
</tr>
<tr>
<td>EXKS</td>
<td>0.439</td>
<td>0.276</td>
<td>0.939</td>
<td></td>
<td></td>
<td></td>
<td>0.882</td>
</tr>
<tr>
<td>IT</td>
<td>0.419</td>
<td>0.084</td>
<td>0.492</td>
<td>0.903</td>
<td></td>
<td></td>
<td>0.816</td>
</tr>
<tr>
<td>KATUT</td>
<td>0.374</td>
<td>0.108</td>
<td>0.409</td>
<td>0.320</td>
<td>0.864</td>
<td></td>
<td>0.746</td>
</tr>
<tr>
<td>PB</td>
<td>0.395</td>
<td>0.093</td>
<td>0.364</td>
<td>0.286</td>
<td>0.295</td>
<td>0.908</td>
<td>0.824</td>
</tr>
<tr>
<td>SN</td>
<td>0.157</td>
<td>0.098</td>
<td>0.054</td>
<td>0.089</td>
<td>0.194</td>
<td>0.117</td>
<td>0.802</td>
</tr>
</tbody>
</table>

5.3 Structural Model and Test of Hypothesis

Suhr (2006) pointed out that structural equation modeling relies on several statistical tests to determine the model fit to the data. Chin (1998) revealed that the path analysis on latent variables are utilized for identifying causal relationships.
between exogenous and endogenous variables, based on the conceptual model. The path coefficient values are measured from ‘-1’ to ‘+1’, which indicates that, the value that is moving towards ‘+1’ exhibits a stronger positive association and the value nearer to ‘-1’ exhibits otherwise (Chin, 1998). Regarding PLS analysis, Hair Jr. et. al (2014, p. 86) mentioned that for sample sizes up to about 1,000 observations, path coefficients with standardized values above 0.20 are usually significant and those with values below 0.10 are usually not significant (accepted as a rule of thumb). We found in our survey that attitude toward knowledge sharing, subjective norms and perceived behavior control have a positive impact on behavioral intention. On the other hand, collaborative climate and level of ICT usage, both have a significant relationship with explicit knowledge sharing behavior.

The tested model and hypotheses of the study results are summarized in the following figure and table:

![Fig 2: Structural model of KMS](image)

Table 5: Summary of the tested result

<table>
<thead>
<tr>
<th>Path</th>
<th>Path coefficient</th>
<th>T-Statistics</th>
<th>P-value</th>
<th>Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI -> EXKS</td>
<td>0.2593</td>
<td>2.5722</td>
<td>0.010767</td>
<td>YES</td>
</tr>
<tr>
<td>CL -> EXKS</td>
<td>0.2125</td>
<td>2.5108</td>
<td>0.012768</td>
<td>YES</td>
</tr>
<tr>
<td>IT -> EXKS</td>
<td>0.3656</td>
<td>3.3064</td>
<td>0.001104</td>
<td>YES</td>
</tr>
<tr>
<td>KATUT > BI</td>
<td>0.2698</td>
<td>2.2139</td>
<td>0.027867</td>
<td>YES</td>
</tr>
<tr>
<td>PB -> BI</td>
<td>0.3073</td>
<td>2.3416</td>
<td>0.020099</td>
<td>YES</td>
</tr>
<tr>
<td>SN -> BI</td>
<td>0.0685</td>
<td>0.58</td>
<td>0.562511</td>
<td>NO</td>
</tr>
</tbody>
</table>

p<0.05 (t > 1.645) significant, *P<0.01 ** (t > 1.96) Very significant, *P<0.001 *** (t>2.58) Extremely significant.

6.0 DISCUSSION AND FINDINGS

The proposed research model presented in Fig. 1 is analyzed here, by extending the concept of TPB. The coefficient of determination, R², is 35.2 % for the Ex.Ks.B endogenous latent variable. The three other latent variables (KATUT, SN, and PBC), all together, explain 23.3% of the variance in BI. The results show that level of ICT usage and collaborative climate are significant interpreters of explicit knowledge sharing behavior of Chinese students’ with the international students; this result also aligns with past studies done by various authors, such as, Dukić et al., 2012 and Omona et al., 2010. This study indicates that the more the students are using different types of ICT, the more they are sharing information with the international students. On the flip side, the outcome of our analysis also found that collaborative climate depicted significant influence on explicit
knowledge sharing behavior of Chinese students’
with the international students, which is also
supported by a past study done by Yang (2007).
Furthermore, the outcome of analysis also found
that SN factors have no significant impact on
behavior intention, and past studies of F.Y. Kuo
and M.L. Young (2008) also support that.

7.0 CONCLUSION AND DIRECTIONS FOR
THE FURTHER RESEARCH
The present study is designed to determine
the effect of six factors on Chinese students’
knowledge sharing behavior with international
students. Found results support the pre-stated
research model, and hypotheses testing have also
shown that all the indicators have direct linkages
among the variables in concern. It illustrates
a comprehensive understanding of knowledge
sharing behavior of Chinese students with the
international students, in Wuhan city. One of
the limitations of this study is scope area, e.g.,
the respondents were considered from only
one university in Wuhan city and the sample
size is a bit small to represent the population in
concern. Furthermore, it is possible that other
variables, such as, trust, culture, demographical &
traditional attributes, sense of well-being (e.g. self-
perceived, self-esteem) may have direct/indirect
impact on explicit knowledge sharing behavior of
Chinese students (Chung et al., 2015; Hendriks,
1999; Howell & Annansingh, 2013; Ma & Chan,
2014; Teh et al., 2010). Hence, there remains a
huge area for future research, if anybody wants
to explore the impact of the said variables on
Chinese students’ explicit knowledge sharing
behavior, with a large sample size. Finally, the
empirical results from this study can be used by
the university policy maker for improving social
infrastructure within a university premise, to
motivate more Chinese student, so that they may
exercise explicit knowledge sharing behavior with
the international students in a broader manner.

References
[1] Ahlemann, F. (2010), Structural equation modeling in
information systems research using partial least squares. Journal
of Information Technology Theory and Application, 11(2), 5-40.
behavior. Springer.
behavior and human decision processes, 50(2), 179-211.
and predicting social behaviour.
behavior. The handbook of attitudes, 173-221.
Sharing—Impact of ICT on Knowledge Sharing Barriers: The Case
of Avanade.
sharing in a public sector organization, Journal of Knowledge
Management, 17(3), 454-471, Doi:10.1108/JKM-11-2012-0369
theory of planned behaviour: A meta-analytic review, British
journal of social psychology, 40(4), 471-499.
Online Knowledge Sharing Intention: A Factor Analysis in
E-Learning System, The International Journal of Science and
Technology, 2(4), 110.
impact first-year students’ sense of well-being.
of demographic heterogeneity on the emergence and
consequences of cooperative norms in work teams. Academy
of management journal, 44(5), 956-974.
doi:10.1016/j.bpmb.2014.11.040
the factors influencing participants’ knowledge sharing
behavior in virtual learning communities. Journal of
Knowledge sharing in academic institutions: a study of
Multimedia University Malaysia. Electronic Journal of
Knowledge Management, 7(3), 313-324.
in Higher Education: A Study of Students Preparing Assessed
Group Work. Journal of Knowledge Management Practice,
14(1).
structural equation modeling. Modern methods for business
research, 295(2), 295-336.
of knowledge sharing within organizations: A comparative
study of the United States and the People’s Republic of China.
participation: the effect of cultural factors. Education &
organisation: Employees’ sense of well-being as a mediating
dx.doi.org/10.1016/j.chb.2014.11.040
culture for knowledge management systems: a study of
corporate users. Ubiquitous Developments in Knowledge
Management: Integrations and Trends: Integrations and
Trends, 52.
theory of planned behavior: A review and avenues for further
research. Journal of applied social psychology, 28, 1429-1464.
the literature.
tacit: Philosophical aspects: International Encyclopedia of the
of students’ ICT usage in the function of Croatian higher
education development management. Tehnički vjesnik, 19(2),
273-280.

