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A mathematical model and condition for drifting of vehicles are presented in 
this paper. Employing the condition for possible steady-state drifting, the 
mathematical model of a vehicle with lateral weight lift during turning and 
drifting as well as adopting a combined tyre force model enables to reduce the 
number of equations of motion to a set of nonlinear coupled algebraic 
equations. The solution of the equations are the longitudinal and lateral 
components of the velocity vector of the vehicle at its mass centre and the 
vehicle’s yaw rate. The numerical values of the variables are associated with an 
equilibrium at which the vehicle drifts steadily. The equilibrium point should be 
analysed for stability by examining for any small disturbance should disappear. 
The procedure applied to a nominal vehicle indicates that an equilibrium point 
exists for every given value of the steering angle as the input. Also, it is shown 
that the equilibrium point is unstable. Hence, to keep the vehicle at the 
associated steady-state drifting, the value of the yaw rate must be kept constant. 
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1. INTRODUCTION 

Race-car drivers wish to keep the speed as high as possible 

in corners. Such a manoeuvre may go into drift when the 

vehicle slides laterally on the road. Drift may also be 

controlled intentionally when the inwards and outwards 

motion of the vehicle are balanced while the vehicle is 

moving the desired path. Generally, race cars are made to 

be rear-wheel-drive to improve their acceleration 

performance. Considering tyre force dynamics, increased 

longitudinal slip at rear tyres will cause a drop of lateral 

force and makes a larger side-slip angle at the rear wheels 

(Jazar, 2019). Therefore, the driver needs to adjust the 

steering and torque input to the vehicle to keep the vehicle 

on track. To prevent the vehicle from spinning, steering the 

vehicle opposite to turning direction may also be needed to 

keep the vehicle on track. The sensitivity of motion of such 

vehicles to inputs is high (Milani et al., 2019, Voser et al., 

2010). 

Steady-state drifting is an unstable manoeuvre and hard to 

explain mathematically. The topic has been under 

investigation by several researchers, (Bobier-Tiu et al., 

2019). Edelmann and Plöchl (2009) showed that the 

equilibrium point corresponding to the drifting of a four-

wheel vehicle is unstable by linearizing the equations 

around the equilibrium point. Velenis, Frazzoli, and 

Tsiotras (2010) analysed a vehicle bicycle model by 

considering longitudinal load transfer and employing the 

magic formula tyre model. They applied a control scheme 

to stabilize the equilibrium point by adjusting steering and 

torque inputs. Velenis et al. (2011) proposed an LQR 

control to adjust the steering angle and rear wheels’ 

angular velocity to keep their vehicle model drifting. An 

iterative method has also been used by Chaichaowarat and 

Wannasuphoprasit to derive steady-state drifting of a 

bicycle model (Chaichaowarat & Wannasuphoprasit, 

2013). There are also several attempts to apply different 

control strategies to keep steady-state drifting on bicycle 

models (Hindiyeh & Gerdes, 2009, Voser, Hindiyeh, & 

Gerdes, 2010, Hindiyeh & Gerdes, 2014). Figure 1 

illustrates a bicycle vehicle model at steady state drifting. 

In this paper, a mathematical model for identifying drifting 

manoeuvres in steady-state condition and controlling the 

vehicle at those conditions are presented. Several criteria 

have been developed to evaluate drifting manoeuvres 

(Abdulrahim, 2006). Quantitative methods have also been 

introduced by measuring vehicle body side-slip angle at its 

mass centre (Abdulrahim 2006, Hindiyeh & Gerdes, 2014). 

Defining drifting has also been done as a large sideslip 

manoeuvres in steady state (Edelmann & Plöchl, 2009, 

Velenis, Frazzoli, & Tsiotras, 2010). Manoeuvres with 

large sideslip, counter-steering, and saturation of lateral 

tyre forces at the rear are also identified as drifting 

(Hindiyeh & Gerdes, 2009). Drifting may also happen 
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unfavourably at high speeds when a driver expects to 

negotiate the vehicle turning in a certain direction, but the 

vehicle will not follow the driver’s command when tyres 

are at large slips. Drifting is usually manoeuvring with 

side-slip angles over the limit and opposite steering, 

(Tavernini et al., 2013, Shi et al., 2017). This study 

develops a kinematic condition for feasible counter 

steering as a mathematical expression to include kinematic 

vehicle variables. A general definition that is not only 

applied to a specific instant of driving but also accounts for 

all principal forces and moments during the manoeuvre. 

The vehicle will turn about the centre of rotation with a 

smaller radius during drifting generating large centripetal 

acceleration. The resultant difference in the longitudinal 

force of left and right driving wheels generates a yaw 

moment about the mass centre of the vehicle that will be 

turning the vehicle, (Hindiyeh & Gerdes, 2009, Voser, 

Hindiyeh, & Gerdes, 2010, Hindiyeh & Gerdes, 2014). 

 

Figure 1: A two-wheel vehicle model at steady state drifting 

To analyse drifting manoeuvres, the suitability of the 

vehicle model is of importance while the level of 

simplifications must be kept reasonable such that the 

model captures the key dynamic behaviours of the vehicle 

during drifting. We use a rear-wheel-drive vehicle and 

assume no positive or negative longitudinal force is present 

at the front tyres. Therefore, we may integrate front wheels 

into a single wheel without losing accuracy. However, we 

keep the rear wheels separate to include weight transfer 

during turning. Figure 2 illustrates such a mathematical 

model. 

 

Figure 2: Three-Wheel Vehicle Model 

2. MATHEMATICAL VEHICLE MODEL 

The general forms of equations of motion for a rigid body 

in planar motion in body coordinate are (Jazar, 2019): 

𝛴𝐹𝑥 = 𝑚𝑣̇𝑥 − 𝑚𝑟𝑣𝑦 (1) 

𝛴𝐹𝑦 = 𝑚𝑣̇𝑦 + 𝑚𝑟𝑣𝑥 (2) 

𝛴𝑀𝑧 = 𝐼𝑧 𝑟̇ (3) 

where, vx, vy, and 𝑟  are longitudinal, lateral, and yaw 

velocities of the mass centre, respectively. As shown in 

Figure 2, the total longitudinal and lateral forces may be 

summarized as: 

𝛴𝐹𝑥 = 𝐹𝑥1 + 𝐹𝑥2 + 𝐹𝑥𝑓 𝑐𝑜𝑠 𝛿 − 𝐹𝑦𝑓 𝑠𝑖𝑛 𝛿  

= 𝐹𝑥𝑟 + 𝐹𝑥𝑓 𝑐𝑜𝑠 𝛿 − 𝐹𝑦𝑓 𝑠𝑖𝑛 𝛿 (4) 

𝛴𝐹𝑦 = 𝐹𝑦1 + 𝐹𝑦2 + 𝐹𝑦𝑓 𝑐𝑜𝑠 𝛿 + 𝐹𝑥𝑓 𝑠𝑖𝑛 𝛿  

= 𝐹𝑦𝑟 + 𝐹𝑦𝑓 𝑐𝑜𝑠 𝛿 + 𝐹𝑥𝑓 𝑠𝑖𝑛 𝛿 (5) 

𝛴𝑀𝑧 =
(𝐹𝑦𝑓 𝑐𝑜𝑠 𝛿 + 𝐹𝑥𝑓 𝑠𝑖𝑛 𝛿)𝑎1 − (𝐹𝑦1 + 𝐹𝑦2)𝑎2

+(𝐹𝑥2 − 𝐹𝑥1)
𝑤

2

  

= (𝐹𝑦𝑓 𝑐𝑜𝑠 𝛿 + 𝐹𝑥𝑓 𝑠𝑖𝑛 𝛿)𝑎1 − 𝐹𝑦𝑟𝑎2 + 𝛥𝐹𝑥𝑟
𝑤

2
    (6) 

Steer angle δ and side-slip angle β are indicated in the 

figure, dimensions a1 and a2 are distances of the front and 

rear axles from vehicle mass centre, respectively, and w 

shows the rear track width. We adopt the combined 

elliptical tyre forces (Jazar, 2019). The longitudinal and 

lateral tyre forces are: 

𝐹𝑥 = 𝐹𝑧𝐶𝑠𝑆(𝑠 − 𝑠𝑠)√1 − 𝐶𝑠𝛼 (
𝑆(𝛼−𝛼𝑠)

𝛼𝑠
)

2

 (7) 

𝐹𝑦 = −𝐹𝑧𝐶𝛼𝑆(𝛼 − 𝛼𝑠)√1 − 𝐶𝛼𝑠 (
𝑆(𝑠−𝑠𝑠)

𝑠𝑠
)

2

 (8) 

Parameters Cs and Cα are the longitudinal and lateral tyre 

stiffnesses, while Csα and Cαs are longitudinal and lateral 

drop factors, and function S is the saturation function which 

limits the magnitude of the input variable to a maximum. 

Parameters ss and αs are the saturation slip values at which 

the tyre forces are assumed to be saturated when the slip 

value reaches these certain limits. The combined tyre force 

indicates that the introduction of a secondary slip causes a 

drop in the current tyre force until both slips are saturated. 

The lateral load transfer at the rear of the car is estimated 

as follows (Jazar, 2019): 

𝛥𝐹𝑧𝑟 = 𝐹𝑧2 − 𝐹𝑧1 = 𝐹𝑧𝑟
2ℎ(𝑣̇𝑦+𝑣𝑥𝑟)

𝑤𝑔
  

         = 𝑚 (
𝑎1𝑔

𝑎1+𝑎2
+

ℎ(𝑣̇𝑥−𝑟𝑣𝑦)

𝑎1+𝑎2
) .

2ℎ(𝑣̇𝑦+𝑣𝑥𝑟)

𝑤𝑔
 (9) 

While vertical loads under the front and rear axles are 

being estimated by the following equations (Jazar, 2019): 

𝐹𝑧𝑓 = 𝑚 (
𝑎2𝑔

𝑎1+𝑎2
−

ℎ(𝑣̇𝑥−𝑟𝑣𝑦)

𝑎1+𝑎2
) (10) 

𝐹𝑧𝑟 = 𝑚 (
𝑎2𝑔

𝑎1+𝑎2
+

ℎ(𝑣̇𝑥−𝑟𝑣𝑦)

𝑎1+𝑎2
) (11) 

where ℎ is the mass centre height of the vehicle from the 

ground.  
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3.  MATHEMATICAL DEFINITION OF DRIFTING  

We begin by assuming a steady-state drifting manoeuvre to 

come up with a kinematic condition for the drifting 

vehicle. At the assumed steady-state turning condition, the 

equation of motion in yaw for the three-wheel planar 

vehicle in steady-state must be: 

𝛴𝑀𝑧 = 0 (12) 

A large torque at rear wheels reduces lateral tyre force at the 

rear and creates a combined-slip condition. The rear tyres 

will spin at this condition as the longitudinal slip saturates 

while large tyre side-slip angles happen, and tyres will be 

side-slip saturate. Hence, it is assumed both rear tyres are 

laterally and longitudinally saturated. The total lateral tyre 

force at the rear will then be: 

𝐹𝑦𝑟 = √1 − 𝐶𝛼𝑠𝜇𝑦𝐹𝑧𝑟 (13) 

Combining (13) and (12) and ignoring derivative terms at 

steady state makes the yaw moment equation become: 

𝛴𝑀𝑧 = 𝐹𝑦𝑓𝑎1 − √1 − 𝐶𝛼𝑠𝜇𝑦𝐹𝑧𝑟𝑎2 +
ℎ𝜇𝑥𝑣𝑥𝑟

𝑔
𝐹𝑧𝑟 = 0  (14) 

The equation is solved for 𝐹𝑦𝑓  and substitute a nominal 

range of vehicle’s parameters, to conclude that the total 

lateral force at the front must be positive to satisfy the yaw 

motion in equilibrium: 

𝐹𝑦𝑓 = 𝐹𝑧𝑟
√1−𝐶𝛼𝑠𝜇𝑦𝑎2−ℎ𝜇𝑥𝑣𝑥𝑟/𝑔

𝑎1
 (15) 

𝑔 = 9.81m/s2,   𝐶𝛼𝑠 ≈ 0.5,   𝜇𝑥 ≈ 𝜇𝑦 ≈ 0.75,  

𝑎2 > 1𝑚,    ℎ < 1𝑚,   𝑣𝑥𝑟 < 0.5𝑔  

𝐹𝑦𝑓 > 0.15
𝐹𝑧𝑟

𝑎1
> 0 (16) 

Having a positive lateral force at the front tyre makes the 

tyre side-slip angle in a left-hand turn to be negative. The 

side-slip angle of the vehicle body at centre of the front 

wheel is shown by 𝛽𝑓, tyre side-slip angle by 𝛼𝑓, and the 

steering angle by 𝛿 and they are related by (Jazar, 2019): 

𝛼𝑓 = 𝛽𝑓 − 𝛿 = 𝑎𝑟𝑐𝑡𝑎𝑛
𝑣𝑦𝑓

𝑣𝑥𝑓
− 𝛿 (17) 

𝛽𝑓 − 𝛿 < 0 → 𝛽𝑓 < 𝛿 (18) 

In case of a negative steer angle to cause left-hand turning 

of the vehicle: 

0f     (19) 

𝑟 > 0 (20) 

Employing (19) and (20), the kinematic condition for 

drifting may now be defined as: 

𝑟𝛽𝑓 < 0 (21) 

Therefore, it is proposed that whenever the yaw velocity 

and body side-slip angle at the front wheel have opposite 

signs, the vehicle is drifting. The condition also provides 

us with an equation to associate a value to the 

instantaneous drifting at any time. Such value suggests that 

a drift meter can be introduced, and the future vehicle can 

be equipped with a warning system to inform the driver 

when the vehicle is approaching a drifting condition. To 

evaluate a manoeuvre in terms of drifting, we integrate the 

expression over time of the manoeuvre. 

4.  PHASE PLANE ANALYSIS AND DRIFTING 
EQUILIBRIUM POINT  

As assumed, the steady-state condition for drifting must be 

associated with an equilibrium condition and it might be 

shown geometrically in suitable state space. To investigate 

this phenomenon, the time derivative terms are removed as 

the state of the system should not change at the equilibrium 

point. Therefore, the equations of motion in equilibrium 

will be: 

𝛴𝐹𝑥 = −𝑚𝑟𝑣𝑦  (22) 

𝛴𝐹𝑦 = 𝑚𝑟𝑣𝑥 (23) 

𝛴𝑀𝑧 = 0 (24) 

Substituting the tyre force model (7) and (8), total 

longitudinal and lateral forces will be written as: 

𝛴𝐹𝑥 = √1 − 𝐶𝑠𝛼 𝜇𝑥𝑚 (
𝑎1𝑔

𝑎1+𝑎2
−

ℎ𝑟𝑣𝑦

𝑎1+𝑎2
)  

+𝑚 (
𝑎2𝑔

𝑎1+𝑎2
+

ℎ𝑟𝑣𝑦

𝑎1+𝑎2
) 𝐶𝛼𝑓 [𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑎1𝑟+𝑣𝑦

𝑣𝑥
) − 𝛿] 𝑠𝑖𝑛 𝛿 (25) 

Σ𝐹𝑦 = √1 − 𝐶𝛼𝑠 𝜇𝑦𝑚 (
𝑎1𝑔

𝑎1+𝑎2
−

ℎ𝑟𝑣𝑦

𝑎1+𝑎2
)  

−𝑚 (
𝑎2𝑔

𝑎1+𝑎2
+

ℎ𝑟𝑣𝑦

𝑎1+𝑎2
) 𝐶𝛼𝑓 [𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑟𝑎1+𝑣𝑦

𝑣𝑥
) − 𝛿] 𝑐𝑜𝑠 𝛿 (26) 

Σ𝑀𝑧 =
ℎ𝑚 𝜇𝑥𝑣𝑥𝑟(

𝑎1𝑔

𝑎1+𝑎2
−

ℎ𝑟𝑣𝑦

𝑎1+𝑎2
)

𝑔
  

−√1 − 𝐶𝛼𝑠 𝜇𝑦𝑚 (
𝑎1𝑔

𝑎1+𝑎2
−

ℎ𝑟𝑣𝑦

𝑎1+𝑎2
) 𝑎2  

−𝑚 (
𝑎2𝑔

𝑎1+𝑎2
+

ℎ𝑟𝑣𝑦

𝑎1+𝑎2
) 𝐶𝛼𝑓 [𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑟𝑎1+𝑣𝑦

𝑣𝑥
) − 𝛿] 𝑐𝑜𝑠 𝛿 𝑎1 (27) 

Substituting these force systems in equations of motion 

leads us to a set of algebraic equations to be solved for the 

vehicle velocity components 𝑣𝑥, 𝑣𝑦 and 𝑟 for a given value 

of steer angle as input. There is no closed-form solution for 

the set of equations and hence, they must be solved 

numerically for given nominal vehicle parameters to 

determine the expected equilibrium points. The nominal 

values are shown in Table 1 (Milani et al., 2019). 

Solving Equations (25)-(27) for the velocities the values of 

𝑣𝑥, 𝑣𝑦 and 𝑟 is found when the vehicle is drifting steadily 

for given values of steer angle. The values shown in Table 

2 are the solutions of the equations. 

Table 1 
Nominal values of vehicle parameters 

𝒎 𝒉 𝒂𝟏 𝒂𝟐 

1600 𝑘𝑔 0.9 𝑚 1.35 𝑚 1.5 𝑚 

𝐶𝑠 𝐶𝛼 𝐶𝑠𝛼 𝐶𝛼𝑠 

7.5 8.5 0.5 0.5 

𝑤 𝐼𝑧 𝑅𝑤 𝐼𝑤 

1.58 𝑚 2000 𝑘𝑔. 𝑚2 0.35 𝑚 1 𝑘𝑔. 𝑚2 

𝑠𝑠 𝛼𝑠 𝜇𝑥 𝜇𝑦 

0.1 0.09 [𝑟𝑎𝑑] 0.75 0.75 
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Table 2 
Values of 𝑣𝑥, 𝑣𝑦, 𝑟 and 𝛿 when the vehicle is drifted steadily 

for given values of steer angle 

𝒓 (𝒓𝒂𝒅/𝒔) 𝒗𝒙 (𝒎/𝒔) 𝒗𝒚 (𝒎/𝒔) 𝜹 (𝒓𝒂𝒅) 

0.844756776 6.080326946 −5.027221269 −0.5 

1.023066746 4.960105873 −3.860670023 −0.4 

1.152547811 4.353764384 −3.192852462 −0.3 

1.254922383 3.956398895 −2.73254504 −0.2 

1.340414747 3.666314032 −2.380578459 −0.1 

1.414736369 3.438840107 −2.092329884 0 

 

To examine the stability of the equilibrium points, the set 

of equations of motion around each equilibrium point may 

be linearized and the associated eigenvalues are calculated 

as  

𝑣̇𝑥 =
𝜕𝑓1(𝑣𝑥,𝑣𝑦,𝑟)

𝜕𝑣𝑥
𝑣𝑥 +

𝜕𝑓1(𝑣𝑥,𝑣𝑦,𝑟)

𝜕𝑣𝑦
𝑣𝑦  

         +
𝜕𝑓1(𝑣𝑥,𝑣𝑦,𝑟)

𝜕𝑟
𝑟 + 𝑔1(𝛿) (28) 

𝑣̇𝑦 =
𝜕𝑓2(𝑣𝑥,𝑣𝑦,𝑟)

𝜕𝑣𝑥
𝑣𝑥 +

𝜕𝑓2(𝑣𝑥,𝑣𝑦,𝑟)

𝜕𝑣𝑦
𝑣𝑦  

         +
𝜕𝑓2(𝑣𝑥,𝑣𝑦,𝑟)

𝜕𝑟
𝑟 + 𝑔2(𝛿) (29) 

𝑟̇ =
𝜕𝑓3(𝑣𝑥,𝑣𝑦,𝑟)

𝜕𝑣𝑥
𝑣𝑥 +

𝜕𝑓3(𝑣𝑥,𝑣𝑦,𝑟)

𝜕𝑣𝑦
𝑣𝑦  

        +
𝜕𝑓3(𝑣𝑥,𝑣𝑦,𝑟)

𝜕𝑟
𝑟 + 𝑔3(𝛿) (30) 

The linearized equations for 𝛿 = −0.5 𝑟𝑎𝑑 , and their 

associated eigenvalues will be: 

[
𝑣̇𝑥

𝑣̇𝑦

𝑟̇

] = [𝐴]3×3 [
𝑣𝑥

𝑣𝑦

𝑟
] + [

𝑔1(𝛿)
𝑔2(𝛿)

𝑔3(𝛿)
]  

        = [
−1859.94 −1664.73 −11336.35
−4756.21 −5333.39 −16874.67

−2.02 −2.02 −4.29
] [

𝑣𝑥

𝑣𝑦

𝑟
] 

            + [

𝑔1(𝛿)
𝑔2(𝛿)

𝑔3(𝛿)
] (31) 

eig([𝐴]) = [
−6911.51
−291.71

5.59
] (32) 

In this case, two of the three eigenvalues have negative real 

parts indicating stability with respect to two of the system 

variables. However, one eigenvalue has a positive real part 

indicating instability of the linear system with respect to 

one of the variables. Figure 3 shows the phase portrait of 

the system variables. The phase portraits show that the 

equilibrium point is stable in the large for 𝑣𝑥, 𝑣𝑦 when 𝑟 is 

kept constant, but unstable when 𝑟  varies. Therefore, 

keeping yaw velocity constant by means of a feedback 

control, the equilibrium drifting point is stable, and it can 

be expected a steady-state drifting motion as is shown in 

Figures 4 and 5.  

 

 

 
Figure 3: Phase Portraits of the Three-Wheel Model at 

Equilibrium Point 

 

Figure 4: Steady-state drifting condition of a  
nominated vehicle  
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Figure 5: Nominated vehicle’s path in the global 
coordinate frame 

5. CONCLUSIONS 

This paper introduces a condition for steady-state drifting 

condition of the vehicle by investigating equilibrium points 

of the equations of motion of vehicles. The lateral and 

longitudinal load transfer has been included. The tyre 

model also was capable to consider the combined slips as 

well as combined saturation of tyre forces. The equations 

of motion at steady state condition have been reduced to a 

set of nonlinear coupled algebraic equations with 

longitudinal and lateral velocities, and yaw rate as 

unknown. The equations may be loaded by parameters of 

any given vehicle to be solved for the unknowns at a given 

steer angle input. If there is any solution for the variables, 

then they will indicate equilibrium points of drifting. The 

stability analysis by employing the eigenvalue method of 

the linearized equations around the equilibrium point 

determines the stability of the equilibrium point. A sample 

example for a set of nominated numerical values as a fixed 

steer angle indicated the existence of an equilibrium point 

suggesting the existence of steady-state drifting. Stability 

analysis of the equilibrium point suggest that it is possible 

to keep the vehicle at a steady-state drifting condition 

when keeping the value of the yaw rate constant by means 

of a control system.  
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