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A new zero-equation model (ZEM) is devised with an eddy-viscosity 
formulation using a stress length variable which the structural ensemble 
dynamics (SED) theory predicts. The ZEM is distinguished by obvious physical 
parameters, quantifying the underlying flow domain with a universal multi-
layer structure. The SED theory is also utilized to formulate an anisotropic 
Bradshaw stress-intensity factor, parameterized with an eddy-to-laminar 
viscosity ratio. Bradshaw’s structure-function is employed to evaluate the 
kinetic energy of turbulence k and turbulent dissipation rate 𝜺𝜺. The proposed 
ZEM is intrinsically plausible, having a significant impact on the prediction of 
wall-bounded turbulence.   
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NOMENCLATURE 

Cµ  eddy-viscosity coefficient 
DNS Direct Numerical Simulation 
k turbulent kinetic energy 

12l  stress length 

TR  eddy-to-laminar viscosity ratio 

S  mean strain-rate  
SED Structural ensemble dynamics  
SST shear stress transport 

iu  Cartesian velocity components 

Tu  friction velocity 
Y wall distance  
y+  u y vτ   

ZEM zero-equation model  

γ  compensated stress length 
p  pressure  

bR  stress-intensity factor 
 Re Reynolds number 
 ε  turbulent dissipation rate 
θ  momentum thickness 
κ  von-Karman constant 

, Tµ µ  laminar & turbulent eddy viscosities  
v  laminar kinematic viscosity   
ρ  density 
ω  specific dissipation rate Subscript 
,i j  variable quantities 

T  turbulent condition  

 

1. INTRODUCTION 

Due to the lack of a relevant existing theory which 
concentrates on the physical understanding of wall 
turbulence, the framework of the RANS (Reynolds-
averaged Navier-Stokes) turbulence model takes a pivotal 
role (Durbin, 2018) on this deficiency. The formulation of 

turbulence model typically becomes complicated when 
introducing correlation artefacts to predict a new flow with 
original features; correlation terms having dimensional 
argument retain several functions or coefficients without 
physical interpretations. In principle, the concept of wall 
turbulence with its universal structure can avoid a large 
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amount of empiricism involved in wall-bounded flows. 
Unfortunately, the Prandtl mixing length theory (Prandtl, 
1925), von Karman log-law argument (Segalini et al., 
2013) and Townsend similarity hypothesis (Townsend, 
1976) are not fully capable of providing a consistent route 
to the development of a zero-equation model (ZEM). The 
current research convokes such an alternative to 
developing a plausible algebraic model, resorting to a well-
established wall-turbulence phenomenon. 

Using a symmetry-based approach, the SED (structural 
ensemble dynamics) theory (She et al., 2009, 2010, 2017) 
has been recently proposed. The concept applies an 
invariant wall restriction on turbulence eddies in the 
framework of a generalized Lie-group dilation invariance 
(LDI) to the stress length 12l , estimating scales of eddies. 
The SED theory speculates a multi-layer formulation for 

12l with a fully-developed channel flow. The analytic 
solution preserves the information of the entire flow 
domain with a four-layer structure; four layers consist of a 
viscous sublayer, buffer layer, bulk flow region (containing 
log-layer) and core layer. The four-layer structure precisely 
characterizes the total flow field and captures the genuine 
similarity image of wall turbulence with an increase in 
Reynolds number. The SED theory is capable of predicting 
its universal analytic etiquette sticking to an LDI principle, 
which is apparently universal in the presence of a wall. 
Remarkably, the variations in multi-layer parameters 
represent disparities among various layers of a physical 
flow domain. 

 A zero-equation (an algebraic) turbulence model is 
developed in the current study, adhering to the impressive 
multi-layer physics of wall turbulence. The turbulent 
kinematic eddy viscosity is calculated as 2

12T l Sν =  , 
where S is the strain-rate invariant. Bradshaw’s stress-
intensity factor [8] is formulated using the SED theory 
which is parameterized with an eddy-to-laminar viscosity 
ratio; the resulting structure-function can reasonably 
predict the kinetic energy of turbulence k and turbulent 
dissipation rate ε . Predictions from the widely-used SST 
(shear-stress-transport) k-ω turbulence model [9] are 
compared with those of the ZEM. Results demonstrate that 
the ZEM performs better than the SST model. A 
remarkable achievement can be ascribed to the current 
work in a way that the wall turbulence with a refined 
physical multi-layer description has prevailed over the 
drawbacks of previously developed algebraic turbulence 
models (Prandtl, 1925; Segalini et al., 2013; Townsend, 
1976; Wilcox, 2006). 

2. GOVERNING EQUATIONS 

The stress length of SED theory has specified the turbulent 
eddy-viscosity in the new algebraic model. The current 
model begins from RANS equations which deal with the 
mean conservation of mass and momentum. RANS 
equations can be represented as follows: 

( ) 0i
i

u
t x
ρ ρ∂ ∂
+ =

∂ ∂
 (1) 

( ) iji
i j

j i j

u pu u
t x x x

σρ ρ
∂∂ ∂

+ = − +
∂ ∂ ∂ ∂

  (2) 

where ju   is the jth component of velocity, jx  represents 
Cartesian coordinates, ρ implies the fluid density and p 
denotes the pressure. The Boussinesq approximation can 
be applied to relate total stresses ijσ   with the mean strain-

rate tensor ijS   as: 

( ) 1 12 ,
3 2

ji
ij T ij kk ij ij

j i

uuS S S
x x

σ µ µ δ
 ∂∂ = + − = +    ∂ ∂   

 (3) 

where the Kronecker’s delta functionis indicated by ijδ ; 

ijδ  = 1 for i j=  and ijδ   = 0 for i j≠  . Laminar and 

turbulent viscosities are designated by µ  and Tµ , 

respectively. According to the SED theory, Tµ   can be 

defined using the stress length function 12l   as: 

2
12T l Sµ ρ=        

where the mean strain-rate invariant S  is given by S   =

2 ij ijS S . A sub-concept of the SED theory, regarded as 

the order-function formula of She et al. (2010) describes 
complex systems with multi-layer structures; the wall 
turbulence belongs to this group. According to the SED 
theory, a well-defined set of functions in the framework of 
multi-products (i.e., order functions) is used to format the 
multi-layer structures. The order function is deduced from 
a quantitative analysis of the generalized LDI, established 
with the presence of wall. The order-function generic form 
can be given as: 

0
0

0
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1

cic biib bn

i i

y yc
a a

φ
=

    
 = +   
     

∏  (5) 

where a, b and c can be adjustable constants; φ is an order 
function having complex multi-layer structures, 
parameterized with a variable y and n is the number of 
products. In fact, the spatial variation of φ involves 
multiple transitions, from one layer to another. Some soft-
wares like MATLAB or Mathematica can assist the curve-
fitting process. The SED hypothesis speculates that in the 
fully-developed turbulent boundary layer, a multi-layer 
form is associated with the stress length 12l . It provides 
(She, 2017): 
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where y yu vτ
+ =  is the dimensionless wall-distance 

with the friction wall-velocity ( )w
u vSτ =   which is 

well-defined for attached and mild separated flows with 
0wS >  ; the kinematic laminar viscosity is given by 

v µ ρ=  . In addition, 1 / 1 / Rer y y τδ += − = −  , 

where δ is the channel half-width and Re u vτ τδ=   
signifies friction Reynolds number. Equation (6) retains a 
canonical four-layer structure of wall turbulence, 
consisting of a viscous sublayer, buffer layer, bulk zone 
and core layer for a fully-developed channel flow. They 
remain apart from each other by empirically evaluated 
layer thicknesses, respectively 9.7, 41sub bufy y+ += =   and 

0.27corer = . In other words, the viscous sublayer ending 

at 9.7suby+ =   is the first layer adjacent to the wall; 

afterward, the buffer layer ends at 41bufy+ = .  

 

Figure 1: Compensated plot of ( )4
12 1l rγ += − . The bulk 

layer (between bufy+  and corer  ) retains almost constant 

values. Dashed lines show thicknesses of viscous sublayer 

( )9.7suby+ =  , buffer layer ( )41bufy+ =   and core layer 

( )0.27corer =  

The core layer expands from the centre-line to a  core layer 
thickness of 0.27corer =   and the bulk-flow region 
consists of the remaining flow domain. In principle, the 
need for defining overlap region is avoided by the structure 
of geometry-dependent bulk-flow, i.e., (1 − r4). It is not 
difficult to verify that for y+ > 41, the celebrated linear law 

12l ky+ +≈  is obtained as a matching function between 

inner and outer regions with 2
0 9.7 41 1.0l κ≈ ≈ , where 

the Karman constant 0.45κ =  has been chosen from the 
original SED theory. 

Near the centre corer r≤   (with r = 1 − y/δ is the distance 
from the channel centre-line), a core layer has been defined 
wherein dissipation and pressure-strain are balanced by 
turbulent transport that takes over production (She, 2017). 
In principle, such shifts in the balancing mechanism induce 
the four-layer structure as mentioned earlier. The multi-
layer structure can also be observed in the compensated 
plot (divided by 1−r4), as displayed in Figure 1; core layers 
are at corey+  = (300; 500) for Reτ = (395; 640). Direct 
Numerical Simulation (DNS) data are available from 
(Mansour et al., 1988; Kawamura et al., 1999).  

The current study deals with the zero-equation model 
(ZEM). However, turbulence quantities can be evaluated 
from turbulence fluctuations using unsteady RANS 
computations. 

 
Figure 2: Stress-intensity parameter for flat-plate boundary 

layer flow at Reθ  = 4060 

An extension of the Bradshaw hypothesis (Bradshaw et al., 
1967) from free shear flows to wall-bounded flows 
convokes a plausible parameter, resolving near-wall 
anisotropy of turbulence. The Bradshaw parameter 

bR uv k Cµ= − ≈ , where uv−   is the principal 
shear stress, k implies the kinetic energy of turbulence and 
Cµ  = 0.09. It is also believed that the SED theory is 
precisely accurate to formulate a variable Bradshaw 
structure-function bR  in the vicinity of the boundary layer. 
In Reference [12], bR  is fabricated as a function of 

TR k y v= . Nevertheless, the present formulation 
necessitates bR as a function of T TR v v= (eddy-to-
laminar viscosity ratio, where T Tv µ ρ=  is the 
kinematic eddy-viscosity) to empirically evaluate k and 
dissipation-rate ε  . Applying the curve-fitting 
approximation (Equation (5)), the structure parameter bR
is obtained after the calibration with DNS data for a fully-
developed turbulent flat-plate boundary-layer flow 
(Schlatter & Orlu, 2010): 

( ) ( )
0.4
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0.120.16 2 2
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T T

C RR
R C R

=
+ +
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where 0.9
1 ,C Cµ= 2 5.0.C Cµ=  As ,TR →∞

0.24
1 2bR C C Cµ≈ ≈ . The present work has three 

products with n = 2. As can be observed from Figure 2, Eq. 
(7) has a good correspondence with DNS data (Schlatter & 
Orlu, 2010) of a fully-developed turbulent flat-plate 
boundary layer at a slice of Reθ  = 4060 (with wake-layer 

DNS data mostly excluded), where Reθ  signifies the 
momentum-thickness Reynolds number. The 
dimensionless turbulent viscosity is calculated as 

( )Tv uv du dy+ + + += − using the DNS data. The 

structure parameter b TR v S k=


 can be employed to 
calculate k and ε  as: 

,T

b

v Sk
R C

=
+



 bR k Sε =


  (8) 

where C = 0.01 is used to avoid the near-wall singularity 
and ε  vanishes at the solid wall. It is worth mentioning 
that on a channel-flow centre-line or outside a boundary 
layer, the strain-rate invariant S may approach zero. 
Therefore, the free-stream strain-rate correction Sα  with a 
non-vanishing identity can be convoked as a remedy; it can 
be approximated from a nearly homogeneous shear flow of 
Champagne et al. (1970) as presented in Equation (9) 
where the added Sα  has a tiny numerical effect. 

2 2 ,S S Sα= +


 11S s
Cα

µ

−=   (9) 

3.  COMPUTATIONS OF FULLY-DEVELOPED 
TURBULENT CHANNEL FLOW 

Fully-developed turbulent channel flows at Reτ  = (395; 
640) are simulated to assess the model competency in 
reproducing near-wall turbulence. Computations are 
carried out in the half-width of a channel, employing a 1-D 
(one-dimensional) RANS solver. A non-uniform 1 × 64 
grid resolution for Reτ  = 395 and 1×128 grid resolution 

for Reτ  = 640 are presumably adequate to accurately 
predict characteristics of the flow (e.g., producing almost 
grid-independent solutions). To assure the viscous sublayer 
resolution, the first near-wall cell height is located at y+ ≈ 
0.3 to assure the viscous sublayer resolution. A cell-
centred finite-volume approach is utilized along with 
SIMPLE algorithm. Predictions of the present zero-
equation model (ZEM) are compared with the well-known 
Menter SST (shear-stress-transport) model (Menter, 1994). 

For a 1-D incompressible flow, the streamwise (x-
direction) mean momentum equation can be given as: 

( ) 0T
p uv v
x y y

 ∂ ∂ ∂
+ + = ∂ ∂ ∂ 

 (10)  

where the positions of lower and upper walls of the 
channel are indicated by y = (−h; h). Since the mean flow 
field has a 1-D identity, the axial gradient of pressure 

p x∂ ∂  remains constant, and the continuity constraint 

i iu x∂ ∂  = 0 is naturally satisfied. However, p x∂ ∂  
must be computed as a part of the solution method since 
the pressure gradient is not known a priori. The pressure-
velocity correction method (Rahman et al., 1996, 1997) is 
an appropriate choice to solve the problem. The scheme 
continually updates the velocity and axial pressure gradient 
as long as the mass imbalance is minimized.  

 
Figure 3: Developed channel flow at ReT   = 395: (a) mean 

velocity; (b) Reynolds shear stress; (c) kinetic energy of 
turbulence and (d) turbulent dissipation-rate 

 

Simulations from the ZEM and Menter’s SST model in 
wall units are presented in Figures 3 and 4. Comparisons 
are prepared by plotting results in terms of u u uτ

+ = , 
2uv uv uτ

+ =  , 2k k uτ
+ =  and 4v uτε ε+ =  versus y+. 

The Boussinesq approximation has been used to calculate 
the Reynolds shear stress. Figures 3(a) and 4(a) show 
velocity profiles from independent turbulence models. 
Simulations of the ZEM and SST model make good 
correspondence with DNS data. Noteworthily, acceptable 
congruence of the ZEM with DNS data can be observed 
without having transport and diffusion effects of the 
kinetic energy of turbulence and turbulent dissipation rate. 
Nonetheless, the SST model under-predicts the mean 
velocity profile in the wake-deficit region of boundary 
layer at Reτ  = 640. Perceptively, the SST k-ω model 
inherits this complication. Profiles of Reynolds shear 
stresses are plotted in Figures 3(b) and 4(b). As can be 
noticed, predictions of the ZEM and SST model agree well 
with DNS data; the difference between them is almost 
indistinguishable. 
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Figure 4: Developed channel flow at ReT  = 640: (a) mean 
velocity; (b) Reynolds shear stress; (c) kinetic energy of 

turbulence and (d) turbulent dissipation-rate 

Model performances are assessed further with the k+ 
profiles, shown in Figures 3(c) and 4(c). As can be 
observed, the ZEM matches with the DNS data in the near-
wall region, whereas the k+ profiles near the wall are badly 
under-predicted by the SST model. Figures 3(d) and 4(d) 
exhibit the ε + -profile from the ZEM and SST 
computations. It is well-known that experimental and DNS 
data exhibit a maximum ε + close to the wall. None of the 
turbulence models is capable of capturing a maximum ε +  
in the wall-vicinity; however, ε + profiles are predicted 
qualitatively well by both models after the wall regime. In 
fact, the numerical stability can be strengthened with such 
a behaviour of the ε + -profile in near-wall regions. The 
SST model experiences an enhancement in the 
convergence of numerical solvers due to this phenomenon. 

4.  CONCLUSIONS 

Predicted results demonstrate that the ZEM has 
consistently outperformed the well-known SST model. The 
success of computation is facilitated by the essence of wall 
turbulence, comprising a universal multi-layer 
quantification of the stress length 12l which interprets the 
invariant (wall-normal distribution) of turbulent eddy-
viscosity. The formulation of ZEM offers a positive 
perspective for the RANS model wherein an accurate 
prediction of wall-bounded flows is enhanced in 
collaboration with the fundamental understanding of wall 
turbulence. The ZEM presumably deserves the following 
specific merits: (a) may produce an accurate constraint on 
unsteady computations such as detached-eddy or large-
eddy simulations; (b) may provide a calibration tool for 
experimental flow conditions and (c) flows over new 
geometries with available experimental data, the ZEM may 
be used to determine corresponding multi-layer parameters 

(like 0l
+  and bufy+ ) which specify the relevant flow physics 

of turbulent boundary-layer. 
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