Physical, Mechanical, and Durability Properties of Concrete with Class F Fly Ash

Md Jahidul Islam1*, Tasnia Ahmed2, Md Riadus Salehin3, Mohammad Sadman Sakib4, Md Shakil Shariar5, and Monowar Hossain6

Department of Civil Engineering, Military Institute of Science and Technology, Dhaka, Bangladesh

emails: 1mjislam@ce.mist.ac.bd; 2tasnia@ce.mist.ac.bd; 3salehin_75@yahoo.com; 4ssakibbd@yahoo.com; 5shakil.otj@gmail.com; and 6monowar5478@gmail.com

1. INTRODUCTION

The modern world is largely dependent on concrete for urbanization and development processes. Cement is a crucial binding material that requires large quantities to produce concrete, and its manufacture demands the use of substantial resources and energy. It also produces many types of harmful emissions, causing environmental effects. Cement production is one of the biggest contributors to carbon dioxide (CO2) production (Feiz et al., 2015), accounting for about 5-7% of manmade CO2 emissions (Barcelo et al., 2014). In 2021, about 35 billion tons of concrete and 4.4 billion tons of cement were used. The percentage of CO2 production by the cement industries can be lowered by up to 90% by reducing the cement requirement in concrete (Andrew, 2018).

Coal is responsible for around 40% of electricity generation worldwide. It is also the key source of carbon dioxide production (Breeze, 2015). Fly ash (FA), the key element of coal ash, is leading to a disposal problem and therefore, is deposited in landfills (Soni et al., 2020; Zierold & Odoh, 2020). Bangladesh's Barapukuria 250 MW coal-based power plant produces about 80 thousand tons of FA annually, which is disposed into empty land as waste material (Howladar & Islam, 2016). If FA can replace a certain portion of cement, it will ensure making environmentally friendly concrete, a major concern nowadays.

Among many approaches to creating environmentally responsive concrete is to partly replace a certain portion of ordinary Portland cement (OPC) with FA in concrete, available in large amounts as a byproduct of coal combustion in power plants. If it is not appropriately disposed of, it will bring about water and soil pollution and...
pose environmental hazards (Yao et al., 2015). The application of FA can lower the impact on the environment, lessen the cost and energy production of concrete (ACI 211.1-91, 1994; Jamora et al., 2020), and is being widely adopted as a partial standby for cement (Ahmaruzzaman, 2010) because of being an artificial pozzolan (ACI 116R, 2000). FA, in conjunction with Portland or blended cement, can reduce early heat of hydration, improve late-age strength development, and decrease permeability (ACI 211.1-91, 1994). FA consumes a large amount of calcium hydroxide (CH) from the cement hydration development and forms denser calcium silicate hydrate (C-S-H) at a later age (Jiang et al., 2020). Improving the fineness of FA results in a raised consumption level for CH (Moghadam et al., 2019). Partial replacement of OPC with FA will ensure the making of sustainable green concrete with good compressive strength (CS) and fracture toughness (Ahmaruzzaman, 2010; Golewski, 2018).

When used as a cementitious component in concrete, FA has some attributes for raw ingredients and direct concrete admixture application for its pozzolanic properties (ACI 225R, 2016; Ahmaruzzaman, 2010; Jamora et al., 2020). There may be an increased tendency for air loss during mixing, transit, and placement if FA is used in a blended cement than with cement with no FA content (ACI 225R, 2016). Finer FA reduces the heat of hydration and water requirement and increases the drying shrinkages compared to coarser FA (Moghadam et al., 2019; Vimonsatit et al., 2015). The hydration products generated by the reaction of FA in conjunction with Portland or blended cement, can reduce early heat of hydration, improve late-age strength development, and decrease permeability (ACI 211.1-91, 1994). FA consumes a large amount of calcium hydroxide (CH) from the cement hydration development and forms denser calcium silicate hydrate (C-S-H) at a later age (Jiang et al., 2020). Improving the fineness of FA results in a raised consumption level for CH (Moghadam et al., 2019). Partial replacement of OPC with FA will ensure the making of sustainable green concrete with good compressive strength (CS) and fracture toughness (Ahmaruzzaman, 2010; Golewski, 2018).

The pozzolanic reaction in FA can improve concrete’s self-healing capability, which develops from the newly generated C-S-H products (Chindaprasirt et al., 2020). Up to the age of 3 years, a 30% FA blended cement paste develops circular voids surrounded by hydration products due to the pozzolanic reaction of hollow FA particles and is more porous than the Portland cement paste (Yu et al., 2017). It can also produce lightweight concrete by acting as a lightweight aggregate (ACI 116R, 2000). About 60% of the FA mass could be separated as coarse fractions, and the remaining 40% of fine FA could be adopted as ultrafine cement after separating the carbon (Lanzerstorfer, 2018). Up to 2.85% reduction in unit weight is detected when 30% cement was substituted with FA (Fantu et al., 2021).

The flexural performance of concrete beams was performed while using a high volume of FA in several kinds of research. Joanna et al. (Joanna et al., 2020) found that the moment capacity of 50% cement-replaced FA beams is slightly more than that of the control specimens after 56 days. The strain, deflection, crack load, yield load, and ultimate load are also found to be almost similar to the content in FA (Amiri et al., 2016; Chinh, 2021; Fuzaal Hashmi et al., 2020; Yoo et al., 2015). The flexural strength of reinforced concrete beams reduces slightly after 90 days for 40% FA replacement (Chinh, 2021). The crack patterns formed in reinforced concrete beams are comparable in both with and without FA, though concrete having high volume FA shows wider cracks (Fuzaal Hashmi et al., 2020). Compared to ordinary concrete, the specimens containing the high volume FA layer exhibit excellent crack control (Shang et al., 2021).

The above-mentioned review revealed that there is potential for using FA in concrete. However, doing an in-depth study of concrete with class F FA is essential. Therefore, this study is based on producing environment-friendly concrete by partially replacing OPC with class F FA produced from the coal-based power plant in Barapukuria, Bangladesh. Workability, density, CS, splitting tensile strength, flexural strength, and durability...
of concrete have been assessed where cement is replaced with 0%, 10%, 20%, 30%, and 40% FA for two w/c ratios of 0.4 and 0.5. This practice could go a long way in alleviating some of the problems or factors that affect our environment and promoting carbon-free development.

2. MATERIALS

A. Aggregates

The coarse aggregate used in this study is from Bholaganj, with a maximum size of 25 mm and a fineness modulus (FM) of 7.23. Local River sand is used as fine aggregate with a well-graded type and size between 2.36 mm to 0.075 mm with an FM of 2.71. The basic properties of the aggregates are outlined in Table 1 which are evaluated according to ASTM regulations. Figure 1 exhibits the aggregates’ gradation compared to the upper and lower limits specified in the ASTM C33 (2018). Compared to fine aggregate, coarse aggregate has a higher unit weight and specific gravity.

![Figure 1: Particle size distribution](image)

Table 1
Basic physical characteristics of the aggregates

<table>
<thead>
<tr>
<th>Component Name</th>
<th>Standard</th>
<th>Coarse Aggregate</th>
<th>Fine Aggregate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum size (mm)</td>
<td>ASTM C136 (2014)</td>
<td>25</td>
<td>2.36</td>
</tr>
<tr>
<td>Fineness modulus</td>
<td>ASTM C136 (2014)</td>
<td>7.23</td>
<td>2.71</td>
</tr>
<tr>
<td>Specific gravity (SSD)</td>
<td>ASTM C127 (2015)</td>
<td>2.67</td>
<td>2.54</td>
</tr>
<tr>
<td>Absorption capacity (%)</td>
<td>ASTM C128 (2015)</td>
<td>0.33</td>
<td>0.60</td>
</tr>
<tr>
<td>Unit weight (kg/m3)</td>
<td>ASTM C29 (2021)</td>
<td>1582 (compact)</td>
<td>1456 (compact)</td>
</tr>
</tbody>
</table>

B. Cement

The binding material used in the current study is ordinary Portland cement (OPC) that contains 95-100 % clinkers and 0-5% gypsum. The physical and mechanical characteristics of the cement are tested following the ASTM standards before sample preparation which is outlined in Table 2. The cement conveys a regular specific gravity and normal consistency. Compressive strength is 29.7 MPa after 28 days of curing, which is greater than 28.0 MPa, the expected value according to ASTM C150 (2021).

Table 2
Physical and mechanical characteristics of cement

<table>
<thead>
<tr>
<th>Physical Properties</th>
<th>Standard</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Gravity</td>
<td>ASTM C188 (2017)</td>
<td>3.15</td>
</tr>
<tr>
<td>Normal Consistency (%)</td>
<td>ASTM C187 (2016)</td>
<td>28</td>
</tr>
<tr>
<td>Compressive Strength (MPa)</td>
<td>ASTM C109 (2020)</td>
<td>29.7</td>
</tr>
<tr>
<td>Initial Setting Time (minutes)</td>
<td>ASTM C191 (2021)</td>
<td>235</td>
</tr>
<tr>
<td>Final Setting Time (minutes)</td>
<td></td>
<td>305</td>
</tr>
</tbody>
</table>

C. Fly Ash (FA)

Fly ash is a byproduct of coal combustion made up of particulate matter generated from coal-fired furnaces and flue gases. It can be an effective substitute for cement. It improves resistance to sulfate attack, saves cost, minimizes the hydration temperature, and lengthens the setting time. Moreover, it improves the workability of fresh concrete and produces a stronger material with less permeability (Islam et al., 2023). In this study, F-class FA is used, which has a diameter of the particles ranging from 490 nm to 5.7 µm. This type of FA contains low calcium (1.56%) and has a specific gravity of 2.30, as per ASTM C188 (2017). The scanning electron microscopy (SEM) image of the FA is shown in Figure 2. Table 3 depicts the chemical analysis of FA.
3. MIX DESIGN

Using ACI 211.1-91 (1994), the mix design for concrete is prepared by replacing a different percentage of cement with FA as supplementary cementing material, varying from 10% to 40% at an interval of 10%. Samples with no FA are also prepared to compare the parameters with the typical concrete characteristics. Two distinct water-to-cement (w/c) ratios are employed, 0.4 and 0.5, eventuating in a total of 10 combinations. For studying the fresh concrete characteristics, a slump test was undertaken for every combination. Table 4 shows the quantity of various materials obtained for 1 m³ concrete mix.

4. SAMPLE PREPARATION AND TEST PROCEDURE

Following the mix proportion mentioned in Table 4, ten combinations of the concrete mix were prepared. Saturated surface dry condition (SSD) was maintained for the aggregates. A drum-type concrete mixer machine was adopted. Initially, coarse and fine aggregates were mixed in the mixer machine for 2 – 3 minutes. Half of the water was added, followed by cement and/or FA insertion. The remaining water was poured and mixed for 2 -3 minutes. Cement and FA were mixed separately beforehand. 100 mm in diameter and 200 mm in height cylinders were made for performing compressive strength (CS), splitting tensile strength (STS), and chloride ion penetration (CIP) tests. For shrinkage and flexural strength tests, 100 mm x 100 mm x 500 mm beams have been prepared. Cylinders and beams were made in two layers, and each layer was compacted with the help of an external vibrator for about 10 seconds. Slump tests of the fresh concrete at 0 and 15 minutes were measured using a slump cone setup. A total of 180 cylinders and 20 beams have been prepared for the whole experimental program. The CS and STS tests were performed in a 2000 kN capacity compression testing machine, as shown in Figure 3(a). A neoprene pad with a steel cap on the top and bottom face of the cylinder was used for the CS test. The CIP test was performed using a 4-point Wenner probe, known as a Resipod surface resistivity meter (Figure 3(b)). It is a non-destructive test. Hence, surface resistivity was measured for all the concrete cylinders before their respective CS and STS tests. ASTM C78 (2022) is followed to perform the flexural strength test of beam samples by third point loading. The distance between the supports at the two ends is 300 mm, keeping a clearance of 100 mm at both ends. The loading points are at equal intervals of 100 mm in between the two supports. Figure 3(c) illustrates the test setup for the flexural strength test.

5. RESULTS AND DISCUSSION

A. Workability

Figure 4 visualizes the result of the fresh mixture’s slump test, and Figure 5 shows the comparison of slump values

<table>
<thead>
<tr>
<th>Components</th>
<th>SiO₂</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>TiO₂</th>
<th>K₂O</th>
<th>CaO</th>
<th>P₂O₅</th>
<th>SO₃</th>
<th>Na₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM C618 (2019) requirement (%)</td>
<td>Sum 50.0 (min)</td>
<td>-</td>
<td>0.8</td>
<td>18 (max)</td>
<td>-</td>
<td>5.0 (max)</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Result (%)</td>
<td>54.6</td>
<td>28.39</td>
<td>5.28</td>
<td>5.08</td>
<td>1.60</td>
<td>1.56</td>
<td>1.45</td>
<td>0.84</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Figure 2: SEM image of FA

Table 3

Chemical analysis of FA
for different w/c ratios and FA contents. It shows that the slump value and workability improve as the FA replacement percentage increases. The control mixes with no FA have a slump value of 195 mm and 165 mm at 0 minutes and 15 minutes after casting, respectively. It increased up to 15% and 9% for 40% FA at 0 and 15 minutes. For a w/c ratio of 0.5, the workability increases by 9% and 12% for fresh and 15 minutes aged concrete. FA improves the workability because the spherical shape of the particles reduces internal friction at the interface of aggregate–paste and produces a ball-bearing effect at the contact point (Babor et al., 2009; Jiménez-Quero et al., 2013).

<table>
<thead>
<tr>
<th>Designation</th>
<th>FA replacement (%)</th>
<th>w/c ratio</th>
<th>Water (kg)</th>
<th>Cement (kg)</th>
<th>Fly ash (kg)</th>
<th>Coarse aggregate (kg)</th>
<th>Fine aggregate (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F0W4</td>
<td>0</td>
<td>0.4</td>
<td>193</td>
<td>483.0</td>
<td>0</td>
<td>957.9</td>
<td>711.0</td>
</tr>
<tr>
<td>F1W4</td>
<td>10</td>
<td>0.4</td>
<td>193</td>
<td>434.7</td>
<td>35.3</td>
<td>957.9</td>
<td>711.0</td>
</tr>
<tr>
<td>F2W4</td>
<td>20</td>
<td>0.4</td>
<td>193</td>
<td>282.6</td>
<td>70.7</td>
<td>957.9</td>
<td>711.0</td>
</tr>
<tr>
<td>F3W4</td>
<td>30</td>
<td>0.4</td>
<td>193</td>
<td>247.3</td>
<td>106.0</td>
<td>957.9</td>
<td>711.0</td>
</tr>
<tr>
<td>F4W4</td>
<td>40</td>
<td>0.4</td>
<td>193</td>
<td>212.0</td>
<td>141.3</td>
<td>957.9</td>
<td>711.0</td>
</tr>
<tr>
<td>F0W5</td>
<td>0</td>
<td>0.5</td>
<td>193</td>
<td>386.0</td>
<td>0</td>
<td>957.9</td>
<td>789.2</td>
</tr>
<tr>
<td>F1W5</td>
<td>10</td>
<td>0.5</td>
<td>193</td>
<td>347.4</td>
<td>28.2</td>
<td>957.9</td>
<td>789.2</td>
</tr>
<tr>
<td>F2W5</td>
<td>20</td>
<td>0.5</td>
<td>193</td>
<td>225.9</td>
<td>56.5</td>
<td>957.9</td>
<td>789.2</td>
</tr>
<tr>
<td>F3W5</td>
<td>30</td>
<td>0.5</td>
<td>193</td>
<td>197.6</td>
<td>84.7</td>
<td>957.9</td>
<td>789.2</td>
</tr>
<tr>
<td>F4W5</td>
<td>40</td>
<td>0.5</td>
<td>193</td>
<td>169.4</td>
<td>112.9</td>
<td>957.9</td>
<td>789.2</td>
</tr>
</tbody>
</table>

Note: FXWY = X is the replacement percentage x 10, and Y is the w/c ratio percentage x 10.

B. Density

The average unit weight for different FA contents is illustrated in Figure 6. The value shows that the unit weight decreases with the increase in FA percentage. Thus, concrete becomes lighter as the specific gravity of FA (2.30) is inferior to cement (3.15). It shows that as the w/c ratio increases, the unit weight of the FA blended concrete...
reduces. These results are consistent with the previous study (Promsawat et al., 2020). Higher water content in concrete results in higher permeable pores. Hence a reduction in unit weight at a hardened state is detected.

Figure 4: Slump test of concrete with w/c ratio of 0.4

Figure 5: Slump height for different mixes

Figure 6: Unit weight for different concrete mixes

C. Compressive Strength

The compressive strength (CS) of cylinders after 7 days, 28 days, and 56 days of curing is shown in Figure 7, which shows the decrement of CS as the FA replacement percentage rises. However, with longer curing time, the increment of CS is higher with FA replacement, which indicates slower strength gain for FA replaced concrete. The increase in CS from 28 days to 56 days age is 13.6% for the control mix (F0W4). On the other hand, it is 24.8%, 64.9%, 37.1%, and 46.7% for 10%, 20%, 30%, and 40% FA respectively and a w/c ratio of 0.4. The combination with 20% FA (F2W4) shows a maximum increase in CS with the curing age. For the w/c ratio of 0.5, a similar scenario is witnessed. The control mix of F0W5 has shown an increase in strength of 6.5% from 28 days to 56 days. In contrast, it is 40.2%, 11.0%, 48.2%, and 73.4%, respectively, for 10%, 20%, 30%, and 40% FA. For this case, the 40% replacement (F4W5) combination shows maximum strength gain with prolonged curing.

Only for the case of F1W4 (w/c ratio of 0.4 and 10% FA replacement) a higher CS is observed in comparison to the reference mix (F0W4). The F1W4 combination has almost equal CS as the control specimen at 28 days. However, at 56 days, strength is higher than control. During the early curing days, the concrete gains strength through cement hydration and forming CH and C-S-H. The pozzolanic reaction of FA is also similar to cement, and the hydration product is closer to C-S-H products. However, the reaction process starts seven or more days after the initial mixing of water for the case of class F FA (Neville, 2016). Hence, with the increase in the curing period, the FA starts to gain strength, and there is a 3% increase in CS for the 10% FA content concrete than the reference concrete without FA after 56 days. The microstructure at 56 days under SEM is shown in Figure 8, where a comparison between F0W4 and F1W4 is presented. It is apparent that the void content efficiently reduces when FA is utilized. A denser C-S-H in F1W4 is also evident, which plays a vital role in improving CS at a later age.

Figure 7: CS of concrete for different percentages of FA replacement

With higher percentages of FA replacement, the rate of strength gain becomes significantly slower, resulting in a lower CS. For a w/c ratio of 0.5, similar type of trend is observed. However, F1W5 (w/c ratio 0.5 and 10% FA replacement) shows only a 3.5% reduction in CS than the control F0W5 at 56 days. In all other cases, with the increase in FA content, a more than 43% decrease is observed in CS. Nonetheless, the increase in the curing period also shows higher CS. In addition, the value of CS increase at 10% replacement is more in w/c ratio 0.4 than 0.5. Furthermore, coarser FA tends to deteriorate the CS of the concrete by slowing down the hydration process and formation of CH and C-S-H (Moghaddam et al., 2019). Therefore, the coarser FA used in this study shows a lesser strength gain at an early age, especially with higher water content in the concrete.
D. Modulus of Elasticity

Young’s modulus (YM) for different FA replacements is shown in Figure 9. At 10% replacement, the YM reduces by 7% and increases by 3% after curing for 7 and 28 days, respectively, at a w/c ratio of 0.4. With the increase of FA replacement, the YM decreases after 20% replacement. At 40% LSP replacement, the reduction is 53% and 32% at 7 and 28 days, respectively. For the w/c ratio of 0.5, the YM deteriorated with increasing FA content after 7 days and 28 days of curing. The reduction varies from 14 – 49% at 7 days and 17 – 40% at 28 days. Therefore, except for one case of a 10% FA replacement, the YM decreases with the increase in FA content. These results are consistent with the strength gain of FA replaced concrete with the age and FA percentages.

E. Rupture Strain

Rupture strain (RS) for different percentages of FA replacements is shown in Figure 10. The RS for a w/c of 0.4 shows closer values after 7 days and 28 days of age, and values vary between 0.00196 and 0.00256. There are no significant changes in RS with the increment of FA replacements. However, for a w/c ratio of 0.5, the RS increases with higher FA content in concrete. At 28 days, RS increases from 0.00382 to 0.00529, with the maximum at 40% FA replaced concrete. Higher FA replacement indicates lower strength and better ductility. With a decrease in CS, RS increases more than two times for a w/c of 0.5 than a w/c of 0.4.

F. Toughness

Rupture Toughness for different FA replacements is shown in Figure 11. It depicts the reduction of toughness with the increase of FA percentage after 7 and 28 days of curing for the w/c ratio of 0.4. Especially for 40% FA replaced concrete, the reduction in toughness is significantly high at 69.6%. However, for the w/c ratio of 0.5 at 28 days, toughness is higher with FA replacement, except for the
case of 10% replacement. The maximum toughness was found at 30% replacement with an increment of 19%. It is evident from the test result that lower-strength concrete is more ductile. The increase in toughness results in an upturn in the plastic zone of the stress-strain diagram (Figure 16).

G. Splitting Tensile Strength
The splitting tensile strength (STS) falls with the increase of FA replacement which is given in Figure 12. For the w/c ratio of 0.4, at 40% replacement, the subsidence of strength is 21.7%. However, F1W4 shows only a 1.4% decrease in strength during the 56 days curing period. Similar to the strength gain for CS, STS gain from 7 days to 56 days is significantly higher with FA replaced concrete. Compared to the 13.2% for the control after 56 days, strength gain is 29.5%, 28.6%, 31%, and 46.9% for the 10%, 20%, 30%, and 40% FA concrete, respectively. A gradual drop in strength is also observed with the increase in FA content for the w/c ratio of 0.5. The tensile strength decreases almost linearly up to 26.7% for F4W5. At this w/c ratio, F1W5 with the replacement of 10% FA gives better results than others. It shows the slightest decrease in strength of 3.3% compared to F0W5 with no FA. Like before, at the w/c ratio of 0.5, STS gain from 7 days to 56 days is 38.1%, 28.3%, 83.3%, and 83.3% for 10 – 40% FA replaced concrete compared to the STS gain of 15.4% for the control specimen.

H. Chloride Ion Penetrability
Concrete surface resistivity is examined through the Resipod surface resistivity meter in compliance with AASHTO TP 95 (2014). These data can be compared with the chloride ion penetrability (CIP) indicators following the AASHTO TP 95 (2014), where the CIP level varies between high to negligible. The lowest surface resistivity value indicates the highest CIP. These values can be correlated to values suggested by ASTM C1202 (2021). For example, surface resistivity less than 12 kΩ-cm, equivalent to 4000+ Coulombs, is classified as high CIP. Whereas values in the range of 12-21 kΩ-cm (2000 – 4000 Coulombs), 21-27 kΩ-cm (1000 – 2000 Coulombs), and 37-254 kΩ-cm (100 – 1000 Coulombs) are categorized respectively as moderate, low, and very low CIP.

A surface resistivity value higher than 254 kΩ-cm (less than 100 Coulombs) is considered negligible CIP. The surface penetrability after a curing period of 7 days, 28 days, and 56 days is measured, and the result is presented in Figure 13. Figure 13 shows that the CIP declines with the increase in FA after 28 days and 56 days of curing, especially with the w/c ratio of 0.4. Increased resistance to CIP is brought on by improved pore structure and a drop in permeability induced by FA (Thomas et al., 2017). The penetrability deteriorates with the rise in FA replacement level. In almost all cases, the penetrability is high. Only at F3W4 and F4W4 the penetrability is moderate. For the w/c ratio of 0.5, the CIP decreases with FA replaced concrete. After 56 days, the CIP is lower for all FA concrete than the control one. However, the surface resistivity value remains unchanged for FA concrete due to higher void content at a higher w/c ratio. Thus, the increase in FA replacement and curing period will reduce the CIP; however, the reduction is higher for a lower w/c ratio.

I. Shrinkage of Concrete Beam
Shrinkage of the 100 x 100 x 500 mm concrete beams is measured at 35 days using a length comparator. The shrinkage percentage is shown in Figure 14. As the figure shows, shrinkage is maximum for the control concrete for the w/c ratios of 0.4 and 0.5. There is a distinct drop in shrinkage for w/c ratio 0.4, where reduction varies between 48.5% and 82.4%, with a maximum drop for the 40% FA replaced concrete. For the w/c ratio of 0.5, the reduction in shrinkage varied between 10.5% and 36.8%, with the lowest for the 10% FA replaced concrete. The hydration process of FA replaced concrete is slower than the OPC, resulting in lesser shrinkage of the FA replaced concrete (Liu et al., 2022). Control concrete of F0W4 has the highest cement content, giving higher hydration. Hence it has the highest shrinkage. With a higher w/c ratio, the hydration process is relatively slow because of the lower amount of cement. Hence it shows relatively lower shrinkage.

![Figure 9: Young's modulus for (a) w/c ratio 0.4 (b) w/c ratio 0.5](image-url)
Islam et al.: Physical, Mechanical, and Durability Properties of Concrete with Class F Fly Ash

Figure 10: Rupture strain for (a) w/c ratio 0.4 (b) w/c ratio 0.5

Figure 11: Toughness for (a) w/c ratio 0.4 (b) w/c ratio 0.5

Figure 12: STS of concrete over the age (a) w/c ratio 0.4 (b) w/c ratio 0.5

Figure 13: Surface resistivity for (a) w/c ratio 0.4 (b) w/c ratio 0.5
J. Flexural Strength of Beam

Figure 15 illustrates concrete beams' flexural strength (FS) for different FA replacement percentages at 56 days after casting. It shows the reduction of FS with the replacement of FA. For the w/c ratio 0.4, the strength reduces almost linearly from 8% to 29%, except for the case of F3W4, where the reduction is only 4.8%. For the w/c ratio 0.5, a 10% increase in FS is observed for F1W5 with 10% FA replacement. However, with higher FA percentages, FS decreases up to 40.3%. This trend is almost similar to the other mechanical properties observed in this study. Slow hydration of FA and coarser size of FA cause a drop in FS of FA contained concrete. However, up to 10% FA replacement can be considered, especially for lower strength concrete at higher w/c ratios. Figure 16 shows the stress-strain plot for different replacements of FA at both the w/c ratios of 0.4 and 0.5. The figures show that maximum strain is higher for a higher-strength concrete with a lesser w/c ratio. Furthermore, the failure pattern is similar for both w/c ratios. Except for F1W5, failure strain and stress are reduced with the increasing FA replacement. At the w/c ratio of 0.5, the maximum stress decreases rapidly with higher FA content. Furthermore, the stress-strain curve gets steeper. The toughness of the concrete has also been measured from the stress-strain plots and depicted in Figure 17. With the higher strength concrete, toughness reduces with the increasing FA replacement, and the reduction is maximum for 40% replacement. The decrease is relatively less in the case of lower strength concrete with the w/c ratio of 0.5. With combinations of F1W5 and F3W5, there is even an increase in toughness.
K. Comparison of Mechanical Properties

Several codes provide expressions to determine the STS, YM, and FS of concrete, such as ACI 318-14 (2014), AS 3600 (2009), fib 2010 (2010), Eurocode 2 (2005), CSA A23.3-14 (2014), ACI 363R (2010) as given in Table 5. As observed from Table 5, code prediction for STS and FS are affined to the CS. Hence, two equations are proposed for the STS and FS in Equations 5 and 15 with an R squared value of 0.994 and 0.987, respectively. ACI 318-14 (2014) and CSA A23.3-14 (2014) indicate that YM is linked to the density and CS of concrete. With increasing FA percentages, FA incorporated concrete has a lower unit weight, CS, and YM. However, none of the equations considered the effect of FA in concrete. Therefore, an equation is proposed using a multiple regression model for YM where the effect of unit weight, CS and FA content is considered and shown in Equation 10.

The STS, YM, and FS calculated using the equations suggested by the codes and the equation proposed in this study are compared in Figure 18, Figure 19, and Figure 20, respectively. Here, equations are suggested depending on the experimental results of STS and YM at 28 days and FS at 56 days. ACI 318-14 (2014) and the proposed equations for the STS are almost similar and overestimate the STS data at lower w/c ratio and FA replacement percentages, as displayed in Figure 18. However, these equations underestimate the STS by as much as 17% for higher w/c ratio and FA contents. Fib (2010) and Eurocode 2 (2005) provide the best correlation, especially at the w/c ratio of 0.4. For the w/c ratio of 0.5, the equations mentioned in these codes underestimate the STS by up to 32%. AS 3600 (2009), significantly underestimates the STS values in all the cases. For the YM equations, the proposed equation, ACI 318-14 (2014), AS 3600 (2009), and CSA A23.3-14 (2014), provide similar predictions with a relatively smaller variation, as illustrated in Figure 19. However, fib (2010) significantly overestimates the YM values with variation as high as 51%. The proposed equation for the calculation of FS gives a good prediction. However, the variation is a maximum of 23% for the w/c ratio of 0.5. A similar prediction is noted for the code equation of fib (2010). On the contrary, ACI 318-14 (2014) and CSA A23.3-14 (2014) underestimate the FS data by 17 – 45%. The FS data are also compared with the ACI 363R, which showed that ACI 363R overestimates the data by 0 – 30%.

<table>
<thead>
<tr>
<th>Table 5</th>
<th>Equations for calculating STS, YM, and FS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Splitting tensile strength, STS (MPa)</td>
<td></td>
</tr>
<tr>
<td>ACI 318-14 (2014)</td>
<td>$\text{STS} = 0.556 \sqrt{\text{f}_{\text{cm}}}$</td>
</tr>
<tr>
<td>AS 3600 (2009)</td>
<td>$\text{STS} = 0.36 \sqrt{\text{f}_{\text{cm}}}$</td>
</tr>
<tr>
<td>fib (2010)</td>
<td>$\text{STS} = 0.3 (\text{f}_{\text{cm}})^{7/3}$</td>
</tr>
<tr>
<td>Eurocode 2 (2005)</td>
<td>$\text{STS} = 0.556 \alpha \sqrt{\text{f}_{\text{cm}}}$</td>
</tr>
<tr>
<td>Proposed Eqn.</td>
<td>$\text{STS} = 0.546 \sqrt{\text{f}_{\text{cm}}}; \ R^2 = 0.994$</td>
</tr>
<tr>
<td>Young's modulus, YM (MPa)</td>
<td></td>
</tr>
<tr>
<td>ACI 318-14 (2014)</td>
<td>$\text{YM} = w_c^{1.5}0.043 \sqrt{\text{f}_{\text{cm}}}$</td>
</tr>
<tr>
<td>AS 3600 (2009)</td>
<td>$\text{YM} = 5055 \frac{\sqrt{\text{f}{\text{cm}}}}{\text{f}{\text{cm}}} \text{(for } \text{f}_{\text{cm}} < 40 \text{ MPa)}$</td>
</tr>
<tr>
<td>fib (2010)</td>
<td>$\text{YM} = E_0 \alpha \left(\frac{\text{f}_{\text{cm}}}{10}\right)^{1/3}$</td>
</tr>
<tr>
<td>CSA A23.3-14 (2014)</td>
<td>$\text{YM} = (3300 \sqrt{\text{f}_{\text{cm}}} + 6900) \left(\frac{\text{w}_c}{2300}\right)^{1.5}$</td>
</tr>
<tr>
<td>Proposed Eqn.</td>
<td>$\text{YM} = w_c^{1.5}0.040 \sqrt{\text{f}_{\text{cm}}} + 27.43 \text{FA}; \ R^2 = 0.991$</td>
</tr>
<tr>
<td>Flexural strength, FS (MPa)</td>
<td></td>
</tr>
<tr>
<td>ACI 318-14 (2014)</td>
<td>$\text{FS} = 0.62 \sqrt{\text{f}_{\text{cm}}}$</td>
</tr>
<tr>
<td>ACI 363R (2010)</td>
<td>$\text{FS} = 0.94 \sqrt{\text{f}_{\text{cm}}}$</td>
</tr>
<tr>
<td>fib (2010)</td>
<td>$\text{FS} = 0.3 \frac{\text{f}_{\text{cm}}^{7/3}}{\text{w}_c}$</td>
</tr>
<tr>
<td>CSA A23.3-14 (2014)</td>
<td>$\text{FS} = 0.6 \lambda \sqrt{\text{f}_{\text{cm}}}$</td>
</tr>
<tr>
<td>Proposed Eqn.</td>
<td>$\text{FS} = 0.849 \sqrt{\text{f}_{\text{cm}}}; \ R^2 = 0.987$</td>
</tr>
</tbody>
</table>
Where, $f_{cm} = CS$ (MPa), $STS = \text{splitting tensile strength}$ (MPa), $YM = \text{Young's modulus}$, $FS = \text{flexural strength}$ (MPa), $w_c = \text{density of concrete}$, $FA = \text{fly ash content}$ ($\%$), $\alpha_s = 0.9$, $E_0 \alpha = 21500$ MPa, $\alpha_f = 0.06h^{0.7}$, $\lambda = 1.0$ for regular density concrete.

Figure 18: Percentage variation of proposed STS equation with codes prediction

Figure 19: Percentage variation of proposed YM equation with codes prediction

Figure 20: Percentage variation of proposed FS equation with codes prediction
9. CONCLUSIONS

This study explored the feasibility of FA as a partial replacement of cement in concrete and disclosed that the replacement of fly ash reduces strength in concrete. However, with a higher curing period, the change in strength is insignificant in the case of a lower percentage of replacement. From the analysis of the test results following findings are identified:

i. The workability of concrete escalates with the increase in FA replacement. The maximum workability is observed at 40% FA replacement both immediately after the casting and after 15 minutes. The increase in a slump is a maximum of 15% for the w/c ratio of 0.4 immediately after concrete casting.

ii. The density of concrete diminishes linearly with higher FA replacement. However, density only decreases by 3% for a 40% FA interchange.

iii. The CS of FA concrete shows 11% to 73% strength gain with age from 28 days to 56 days. This is especially significant for higher FA substitution. Generally, CS reduces with the increase in FA replacement. The lowest CS is found at 40% FA replacement. However, 10% FA replaced concrete shows promising results after 56 days curing period. For the w/c ratio of 0.4, the CS does not reduce rather increases by 3% from the control specimen. Whereas, for the 0.5 w/c ratio, the reduction in CS is only 3.5% on 56 days.

iv. Like the CS, YM for FA replaced concrete also shows a constant decrease up to 32%, and 40% for w/c ratios of 0.4 and 0.5, respectively, at 28 days. Coarser FA slows the hydration procedure causing a slower gain in strength.

v. The rupture strain did not demonstrate substantial change with the FA replacement for the w/c ratio of 0.4. However, for the w/c ratio of 0.5, it increases and gives the maximum result at 40% FA replacement, which, after 28 days, is 38.7% greater than the reference concrete.

vi. The toughness of concrete decreases with the replacement of FA for the w/c ratio of 0.4. At 40% FA replacement, the reduction is 69.6%. However, it improves for the w/c ratio of 0.5. For the w/c ratio of 0.5, 30% FA replacement gives 19% higher toughness than the control specimen.

vii. The STS reduces with the increase of FA replacement and up to 21.7% and 26.7% strength drop is observed for w/c ratios of 0.4 and 0.5, respectively. The reduction is minimum at 10% replacement and only 1.4% and 3.3%, respectively compared to the control specimen. Furthermore, FA concrete shows up to 83.3% STS gain from 7 days to 56 days of concrete age.

viii. CIP decreases with the increase in FA replacement. The reduction is a maximum at 40% FA substitution. At 30 and 40% FA substitution with the w/c ratio of 0.4, CIP is moderate, while in all other cases, it is highly penetrable.

ix. Shrinkage reduces rapidly with the increase in FA replacement. The maximum reduction is 82.4% and 36.8% at 40% and 20% FA levels, respectively, for w/c ratios 0.4 and 0.5 compared to the control concrete.

x. The FS reduces with the substitution of FA in concrete. The reduction is 16% for up to 30% FA substitution. For the combination of F1W5, a 10% increase in FS is observed compared to the control concrete. However, for 40% FA concrete drop in FS is 29.0% and 40.3% for w/c ratios of 0.4 and 0.5, respectively. The toughness was measured from the load-deflection plots of beam tests; comparable values are observed at 10% FA concrete for both w/c ratios.

xi. Three equations are proposed to predict the STS, YM, and FS from the CS, unit weight, and FA of concrete based on the experimental data collected in this study. The values generated from these equations are then compared with the experimental data and several code-predicted data. Although several codes provided good correlation, not a single code gives consistently good correlation to predict these properties. Hence, a revision of code equations may be considered.

Concrete with FA shows superior concrete durability characteristics in terms of shrinkage and chloride ion penetrability. However, a higher percentage of FA substitution results in lower mechanical properties. Hence, up to 10% FA replacement with a higher curing period may be suitable for producing environment-friendly concrete.

ACKNOWLEDGEMENTS

This study has been conducted at the Concrete Lab of the Civil Engineering Department, MIST, Dhaka, Bangladesh. A special thank goes to the laboratory staff and the Head of the Department of Civil Engineering.

REFERENCES

AASHTO TP 95. (2014). Standard Method of Test for Surface Resistivity Indication of Concrete’s Ability to Resist Chloride Ion Penetration. AASHTO Annual Meeting, Orlando, FL.

ACI 225R. (2016). Guide to the Selection and Use of Hydraulic Cements American Concrete Institute, Farmington Hills, MI.

ACI 318-14. (2014). Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute, Farmington Hills, MI.

ACI 363R. (2010). Report on High-Strength Concrete. American Concrete Institute, Farmington Hills, MI.

