Development of a Probabilistic Correlation between the Gamma Ray Index and Shale Volume Factor to Improve Resource Estimation for the Niger Delta Basin, Nigeria
Abstract
The shale volume factor is among the critical petrophysical parameters for reservoir characterization and formation evaluation. Inaccurate estimates of the shale volume factor can lead to poor reserves or resource estimates and wrong business decisions. While the current industry standard is to estimate the shale volume factor from the gamma ray logs using the concept of the gamma ray index, a relationship between the shale volume factor and the gamma-ray index needs to be established for any region/basin under consideration. For most applications in the Niger Delta Basin, a linear relationship is often assumed. However, there is no proven relationship between the shale volume factor and the gamma-ray index for the formations in the Niger Delta Basin. This paper proposes a new shale volume factor prediction correlation for the Niger Delta Basin in Nigeria. The correlation development is based on establishing a relationship between the shale volume factor obtained from cores and the gamma ray index obtained from petrophysical logs for over thirty wells drilled across the Niger Delta Basin. The results show that the relationship between the shale volume factor and the gamma-ray index is not linear as often assumed but a power law model. The new probabilistic correlation predicts lower shale volume factors than the linear model for all ranges of the gamma-ray index. This recent correlation will significantly impact how the hydrocarbon resources and reserves are quantified in the Niger Delta Basin.
Downloads
References
Adewole, E. O., Macdonald, D. I. M., & Healy, D. (2016). Estimating density and vertical stress magnitudes using hydrocarbon exploration data in the onshore Northern Niger Delta Basin, Nigeria: Implication for overpressure prediction. Journal of African Earth Sciences, 123, 294–308. https://doi.org/10.1016/j.jafrearsci.2016.07.009
Alfredo, H., & TANG, W. H. (2007). Probability concepts in engineering. Planning, 1(4), 1–3.
Al-Jafar, M. K., & Al-Jaberi, M. H. (2022). Determination of clay minerals using gamma ray spectroscopy for the Zubair Formation in Southern Iraq. Journal of Petroleum Exploration and Production Technology, 1–8.
Avbovbo, A. A. (1978). Tertiary lithostratigraphy of the Niger Delta. AAPG Bulletin, 62(2), 295–306.
Barba, R. E., & Allen, M. P. (2001). Development and Validation of an Integrated Reservoir Pressure and Effective Gas Permeability Model Using Wireline Log and Pre-Frac Pump-in Test Data in the Bob West Field, South Texas Wilcox. SPE Annual Technical Conference and Exhibition.
Bardon, C., & Pied, B. (1969). Formation water saturation in shaly sands. SPWLA 10th Annual Logging Symposium.
Bhuyan, K., & Passey, Q. R. (1994). Clay estimation from GR and neutron-density porosity logs. SPWLA 35th Annual Logging Symposium.
Birch, F. (1960). The velocity of compressional waves in rocks to 10 kilobars: 1. Journal of Geophysical Research, 65(4), 1083–1102.
Biscaye, P. E. (1964). Distinction between kaolinite and chlorite in recent sediments by X-ray diffraction. American Mineralogist: Journal of Earth and Planetary Materials, 49(9–10), 1281–1289.
Castagna, J. P., Batzle, M. L., & Eastwood, R. L. (1985). Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks. Geophysics, 50(4), 571–581.
Cheng, K., & Heidari, Z. (2017). A new method for quantifying cation exchange capacity in clay minerals. SPWLA Annual Logging Symposium, D053S017R002.
CLAVIER C, HOYLE W, & MEUNIER D. (1971). QUANTITATIVE INTERPRETATION OF THERMAL NEUTRON DECAY TIME LOGS. JPT, Journal of Petroleum Technology, 23, 743–763. https://doi.org/10.2118/2658-a-pa
Daukoru, J. W. (1975). PD 4(1) Petroleum Geology of the Niger Delta. World Petroleum Congress.
Doust, H. (1990). Petroleum geology of the Niger Delta. Geological Society, London, Special Publications, 50(1), 365.
Doust, H., & Omatsola, E. (1990). Niger Delta. In Divergent / Passive Margin Basins (Vol. 48, pp. 201–238).
Eberhart-Phillips, D., Han, D.-H., & Zoback, M. D. (1989). Empirical relationships among seismic velocity, effective pressure, porosity, and clay content in sandstone. Geophysics, 54(1), 82–89.
Elverhøi, A., & Rønningsland, T. M. (1978). Semiquantitative calculation of the relative amounts of kaolinite and chlorite by X-ray diffraction. Marine Geology, 27(1–2), M19–M23.
Essien, U. E. (2019). Shale volume and porosity delineation of coast swamp depobelt in Niger Delta Region, Nigeria, Using Well Log. International Journal of Advanced Geosciences, 7(2), 142–146.
Evamy, B. D., Haremboure, J., Kamerling, P., Knaap, W. A., Molloy, F. A., & Rowlands, P. H. (1978). Hydrocarbon habitat of Tertiary Niger delta. AAPG Bulletin, 62(1), 1–39.
Fajana, A. O. (2021). Analytical modeling of effect of volume of shale different calculation methods on reservoir petrophysical parameters. Earth Science Informatics, 14(1), 543–561.
Gardner, G. H. F., Gardner, L. W., & Gregory, Ar. (1974). Formation velocity and density—The diagnostic basics for stratigraphic traps. Geophysics, 39(6), 770–780.
Kennedy, D. (2021). Gamma Ray Index-Shale Volume Transforms. SPWLA 62nd Annual Logging Symposium.
Kowallis, B. J., Jones, L. E. A., & Wang, H. F. (1984). Velocity‐porosity‐clay content systematics of poorly consolidated sandstones. Journal of Geophysical Research: Solid Earth, 89(B12), 10355–10364.
Larionov, V. V. (1969). Borehole radiometry. Nedra, Moscow, 127.
McPhee, C., Reed, J., & Zubizarreta, I. (2015). Wellsite Core Acquisition, Handling and Transportation. In Developments in Petroleum Science (Vol. 64, pp. 17–88). Elsevier. https://doi.org/10.1016/B978-0-444-63533-4.00002-0
Miranda-Trevino, J. C., & Coles, C. A. (2003). Kaolinite properties, structure and influence of metal retention on pH. Applied Clay Science, 23(1–4), 133–139.
Oloruntobi, O., & Butt, S. (2019a). The new formation bulk density predictions for siliciclastic rocks. Journal of Petroleum Science and Engineering, 180, 526–537. https://doi.org/10.1016/j.petrol.2019.05.017
Oloruntobi, O., & Butt, S. (2019b). The new formation bulk density predictions for siliciclastic rocks. Journal of Petroleum Science and Engineering, 180, 526–537. https://doi.org/10.1016/j.petrol.2019.05.017
Oloruntobi, O., & Butt, S. (2019c). The new formation bulk density predictions for siliciclastic rocks. Journal of Petroleum Science and Engineering, 180, 526–537. https://doi.org/10.1016/j.petrol.2019.05.017
Oloruntobi, O., & Butt, S. (2020). Application of specific energy for lithology identification. Journal of Petroleum Science and Engineering, 184, 106402.
Oloruntobi, O., Falugba, O., Ekanem-Attah, O., Awa, C., & Butt, S. (2020). The Niger Delta basin fracture pressure prediction. Environmental Earth Sciences, 79(13), 1–11.
Oyeyemi, K. D., Olowokere, M. T., & Aizebeokhai, A. P. (2019). Prospect analysis and hydrocarbon reservoir volume estimation in an exploration field, shallow offshore depobelt, Western Niger Delta, Nigeria. Natural Resources Research, 28(1), 173–185.
Pauling, L. (1930). The structure of the chlorites. Proceedings of the National Academy of Sciences, 16(9), 578–582.
Poupon, A., & Gaymard, R. (1970). The evaluation of clay content from logs. SPWLA 11th Annual Logging Symposium.
Poupon, A., & Levaux, J. (1971). Evaluation of water saturation in shaly formations Proceeding of SPWLA 12th Annual Logging Symposium.
Poupon, A., Loy, M. E., & Tixier, M. P. (1954). A contribution to electrical log interpretation in shaly sands. Journal of Petroleum Technology, 6(06), 27–34.
Prasse, E., Hornbrook, J., Dharanidharan, B., Al-Bahar, M., Al-Sane, A., Bora, A., Shrinivisan, A., & Dhote, P. (2019). Clay Volume Is Not Shale Volume–A Case Study In The Miocene Lower Fars Formation in Kuwait. SPE Kuwait Oil & Gas Show and Conference.
Revil, A., & Cathles Iii, L. M. (1999). Permeability of shaly sands. Water Resources Research, 35(3), 651–662.
Sayers, C. M., & den Boer, L. D. (2021). Porosity variation of elastic wave velocities in clean sandstones. Geophysical Prospecting, 69(8–9), 1733–1744.
Schön, J. H. (2015). Electrical Properties. In Developments in Petroleum Science (Vol. 65, pp. 301–367). Elsevier B.V. https://doi.org/10.1016/B978-0-08-100404-3.00008-1
Schon, J. H., & Georgi, D. (2003). Dispersed shale, shaly-sand permeability-a hydraulic analog to the waxman-smits equation. SPWLA 44th Annual Logging Symposium.
Serra, O. (1984). The Acquisition of Logging Data: Part A. Elsevier.
Short, K. C., & Stauble, A. J. (1967). Outline of Geology of Niger Delta. The American Association of Petroleum Geologists Bulletin, 51(5), 761–779.
Simandoux, P. (1963). Dielectric measurements on porous media, application to the measurements of water saturation: study of behavior of argillaceous formations. Revue de l’Institut Francais Du Petrol, 18(suppl), 93–215.
Stieber, S. J. (1970). Pulsed neutron capture log evaluation-Louisiana gulf coast. Fall Meeting of the Society of Petroleum Engineers of AIME.
Szabó, N. P. (2011). Shale volume estimation based on the factor analysis of well-logging data. Acta Geophysica, 59(5), 935–953.
Tuttle, M. L., Charpentier, R. R., & Brownfield, M. E. (1999). The Niger Delta Petroleum System: Niger Delta Province, Nigeria, Cameroon, and Equatorial Guinea, Africa. US Department of the Interior, US Geological Survey.
Winsauer, W. O., & McCardell, W. M. (1953). Ionic double-layer conductivity in reservoir rock. Journal of Petroleum Technology, 5(05), 129–134.
Xu, S., & White, R. E. (1995). A new velocity model for clay‐sand mixtures 1. Geophysical Prospecting, 43(1), 91–118.
Yusuf, B., Oloruntobi, O., & Butt, S. (2019). The formation bulk density prediction for intact and fractured siliciclastic rocks. Geodesy and Geodynamics, 10(6), 446–454.
Though MIJST follows the open access policy, the journal holds the copyright of each published items.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.