Effect of Non-Uniform Soiling on Solar Panel Output and Revenue Analyzed Through a Controlled Experiment by Using a Designed I-V Scanner
Abstract
Non-uniform soiling drastically decreases the power generation of PV panels. Different events are responsible for the non-uniform soiling on PV panels for example bird droppings, sand storms, or snowfall. In this study, we have achieved multiple-goals for analyzing the effect of non-uniform soiling on a PV module output. We also analyzed the revenue losses due to the non-uniform soiling in a PV power plant. Firstly, for observing the effect of non-uniform soiling an I-V scanner has been designed. Secondly, the designed I-V scanner has been used to observe the changes in the I-V characteristics curve of PV panels due to non-uniform soiling and shading conditions. In this study, we have conducted various controlled experiments by providing different shading conditions on the PV panel and observing the I-V curve changes. A correlation has been done with the various shadowing conditions like the bottom edge soiling condition of PV panels or bird-dropping. In a PV power plant, non-uniform soiling may occur at the edge of PV panels after cleaning intervention. Considering these scenarios, we have done an economic analysis for determining the effect of non-uniform soiling on the revenue of PV power plants. Finally, the relations between the cleaning cycle, performance loss factor, and solar cell area coverage with respect to revenue have been also discussed in this article.
Downloads
References
AlDowsari, A., Bkayrat, R., AlZain, H., & Shahin, T. (2014). Best practices for mitigating soiling risk on PV power plants. 2014 Saudi Arabia Smart Grid Conference (SASG), 1–6. https://doi.org/10.1109/SASG.2014.7274291
Cui, Y.-Q., Xiao, J.-H., Xiang, J.-L., & Sun, J.-H. (2021). Characterization of Soiling Bands on the Bottom Edges of PV Modules. Frontiers in Energy Research, 9, 145. https://doi.org/10.3389/fenrg.2021.665411
Gallardo-Saavedra, S., & Karlsson, B. (2018). Simulation, validation and analysis of shading effects on a PV system. Solar Energy, 170, 828–839. https://doi.org/10.1016/j.solener.2018.06.035
Gökdağ, M., Akbaba, M., & Gulbudak, O. (2018). Switched-capacitor converter for PV modules under partial shading and mismatch conditions. Solar Energy, 170, 723–731. https://doi.org/10.1016/j.solener.2018.06.010
Gostein, M., Littmann, B., Caron, J., & Dunn, L. (2013). Comparing PV power plant soiling measurements extracted from PV module irradiance and power measurements. 3004–3009. https://doi.org/10.1109/PVSC.2013.6745094
Jahangir, J. B., Al-Mahmud, Md., Sarker Shakir, Md. S., Hasan Mithhu, Md. M., Rima, T. A., Sajjad, R. N., & Khan, M. R. (2020). Prediction of Yield, Soiling Loss, and Cleaning Cycle: A Case Study in South Asian Highly Construction-Active Urban Zone. 2020 47th IEEE Photovoltaic Specialists Conference (PVSC), 1371–1374. https://doi.org/10.1109/PVSC45281.2020.9300606
Karthick, A., Manokar Athikesavan, M., Pasupathi, M. K., Manoj Kumar, N., Chopra, S. S., & Ghosh, A. (2020). Investigation of Inorganic Phase Change Material for a Semi-Transparent Photovoltaic (STPV) Module. Energies, 13(14), 3582. https://doi.org/10.3390/en13143582
Kazmerski, L. L., Diniz, A. S. A. C., Braga, D. S., Maia, C. B., Viana, M. M., Costa, S. C., Brito, P. P., Campos, C. D., de Morais Hanriot, S., & de Oliveira Cruz, L. R. (2017). Interrelationships Among Non-Uniform Soiling Distributions and PV Module Performance Parameters, Climate Conditions, and Soiling Particle and Module Surface Properties. 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), 2307–2311. https://doi.org/10.1109/PVSC.2017.8366584
Lorenzo, E., Moretón, R., & Luque, I. (2014). Dust effects on PV array performance: In-field observations with non-uniform patterns: Dust effects on PV array performance. Progress in Photovoltaics: Research and Applications, 22(6), 666–670. https://doi.org/10.1002/pip.2348
Maghami, M. R., Hizam, H., Gomes, C., Radzi, M. A., Rezadad, M. I., & Hajighorbani, S. (2016). Power loss due to soiling on solar panel: A review. Renewable and Sustainable Energy Reviews, 59, 1307–1316. https://doi.org/10.1016/j.rser.2016.01.044
Manganiello, P., Balato, M., & Vitelli, M. (2015). A Survey on Mismatching and Aging of PV Modules: The Closed Loop. IEEE Transactions on Industrial Electronics, 62(11), 7276–7286. https://doi.org/10.1109/TIE.2015.2418731
Mithhu, Md. M. H., Rima, T. A., & Khan, M. R. (2021). Global analysis of optimal cleaning cycle and profit of soiling affected solar panels. Applied Energy, 285, 116436. https://doi.org/10.1016/j.apenergy.2021.116436
Molin, M. D. (2018). Experimental Analysis of the Impact of Soiling on Photovoltaic Modules Performance. Master’s Thesis. Milan: Politecnico Di Milano.
Pereira, T. A., Schmitz, L., dos Santos, W. M., Martins, D. C., & Coelho, R. F. (2021). Design of a Portable Photovoltaic I–V Curve Tracer Based on the DC–DC Converter Method. IEEE Journal of Photovoltaics, 11(2), 552–560. https://doi.org/10.1109/JPHOTOV.2021.3049903
Pigueiras, E., Moretón, R., & Luque, I. (2014). Dust effects on PV array performance: In-field observations with non-uniform patterns. Progress in Photovoltaics: Research and Applications, 22. https://doi.org/10.1002/pip.2348
Qasem, H., Betts, T., Müllejans, H., Albusairi, H., & Gottschalg, R. (2014). Dust‐induced shading on photovoltaic modules. https://doi.org/10.1002/PIP.2230
Schill, C., Brachmann, S., & Koehl, M. (2015). Impact of soiling on IV-curves and efficiency of PV-modules. Solar Energy, 112, 259–262. https://doi.org/10.1016/j.solener.2014.12.003
Sisodia, A., & Mathur, R. (2019). Impact of bird dropping deposition on solar photovoltaic module performance: A systematic study in Western Rajasthan. Environmental Science and Pollution Research, 26. https://doi.org/10.1007/s11356-019-06100-2
Sulaiman, S. A., Hussain, H. H., Leh, N. S. H. N., & Razali, M. S. I. (2011). Effects of Dust on the Performance of PV Panels. International Journal of Mechanical and Mechatronics Engineering, 5(10), 2021–2026. https://publications.waset.org/10305/effects-of-dust-on-the-performance-of-pv-panels
MIJST follows the open access policy.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. This allows anyone to copy, share, distribute, and modify the work for non-commercial purposes, where the original work and source should be properly credited.