Bit Error Rate Performance in CDMA Free Space Optical Links with SIK Receiver under Fog Conditions

  • A K M Nazrul Islam Department of Electrical Electronic and Communication Engineering, Military Institute of Science and Technology, Bangladesh
  • Satya Prasad Majumder Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Bangladesh
Keywords: OCDMA, Double gamma function, BER, Multiple Access Interference (MAI), Sequence Inverse Keying (SIK)


This article presents a novel analytical method for evaluating fog's impact on Bit Error Rate (BER) in an Optical Code Division Multiple Access (OCDMA) Free Space Optical (FSO) connection. The investigation employs an optical encoder and direct detection receiver employing a balanced photo detector with Sequence Inverse Keying (SIK) to explore fog effects. By scrutinizing multi-access interference (MAI) current and signal current values at the SIK receiver's output under varied fog conditions, we deduce BER expressions for diverse scenarios. These encompass different fog thickness levels, code lengths, simultaneous users, and system parameters. The results reveal substantial OCDMA degradation due to fog thickness and users. Also, the system incurs a marked power penalty at a specific BER, especially with higher fog and user density. However, we identify a potential solution: increasing code length, effectively mitigating fog-induced performance decline.


Download data is not yet available.


Aharonovich, M. & Arnon, S. (2005). Performance improvement of optical wireless communication through fog with a decision feedback equalizer. Journal of Optical Society of America A, 22(8), 1646-1654. DOI: 10.1364/JOSAA.22.001646

Ali, M. (2012). Free Space Lasers Propagation at Different Weather Conditions. Al- Mustansiriyah Journal Science, 23(2), 81-90

Ashrafzadeh, B., Zaimbashi, A., Soleimani-Nasab, E., & Uysal, M. (2020). Unified Performance Analysis of Multi-Hop FSO Systems Over Double Generalized Gamma Turbulence Channels with Pointing Errors. IEEE Transactions on Wireless Communications, 19(11), 7732–7746.

Al-Gailani, S. A., Mohd Salleh, M. F., Salem, A. A., Shaddad, R. Q., Sheikh, U. U., Algeelani, N. A., & Almohamad, T. A. (2021). A Survey of Free Space Optics (FSO) Communication Systems, Links, and Networks. IEEE Access, 9, 7353–7373.

Bai, F., Su, Y. & Sato, T. (2015). Performance Analysis of Heterodyne-Detected OCDMA Systems Using PoISK Modulation over a Free-Space Optical Turbulece Channel. Photonics, 4(4), 785-798. DOI:

Esmail, M. A., Ragheb, A. M., Fathallah, H. A., Altamimi, M., & Alshebeili, S. A. (2019). 5G-28 GHz Signal Transmission Over Hybrid All-Optical FSO/RF Link in Dusty Weather Conditions. IEEE Access, 7, 24404–24410.

Grabner, M. & Kvicera, V. (2014). Multiple scattering in Rain and Fog on Free-Space Optical Links. Journal of Lightwave Technology, 32(3), 513-519.

Kalesnikau, I., Pioro, M., Rak, J., Ivanov, H., Fitzgerald, E., & Leitgeb, E. (2021). Enhancing Resilience of FSO Networks to Adverse Weather Conditions. IEEE Access, 9, 123541–123565.

Liu, P., Wu, X., Wakamori, K., et. al. (2011). Bit Error Rate Performance Analysis of Optical CDMA Time Diversity Links over Gamma-Gamma Atmospheric Turbulence Channel. IEEE Conference on Wireless Communications and Networking (WCNC), 1932-1936. DOI:

Mahalati, R, N. & Kahn, J, M. (2012). Effect of fog on free-space optical links employing imaging receivers. Optics Express, 20(2), 1649-1661. DOI:

Majumder, S, P., Azhari, A. & Abbou, F, M. (2005). Impact of Fiber Chromatic Dispersion on the BER Performance of an Optical CDMA IM/DD Transmission System. IEEE Photonic Technology Letters, 17(6), 1340-1342. DOI: 10.1109/LPT.2005.846924

Mori, S., & Marzano, F, S. (2015). Microphysical characterization of free space optical link due to hydrometeor and fog effects. Applied Optics, 54(22), 6787-6803. DOI: 10.1364/AO.54.006787

Nebuloni, R. & Capsoni, C. (2014). Sensitivity of laser attenuation through fog to the wavelength and to the drop size distribution. 19th European Conference on Networks and Optical Communications - (NOC), 86-90. DOI: 10.1109/NOC.2014.6996833

O’Farrell, T. & Lochmann, S, I. (1995). Switched correlated receiver architecture for optical CDMA networks with bipolar capacity. Electronic Letters, 31(11), 905-906.

Schimmel, G., Proudit, T., Morgin, D., Kasparin, J., & Wolf, J, P. (2018). Free Space Laser Telecommunication through Fog. Optica, 5(10), 1338-1341. DOI:

Singh, H., Mittal, N., Miglani, R., Singh, H., Gaba, G. S., & Hedabou, M. (2021, October). Design and Analysis of High-Speed Free Space Optical (FSO) Communication System for Supporting Fifth Generation (5G) Data Services in Diverse Geographical Locations of India. IEEE Photonics Journal, 13(5), 1–12.

Sunilkumar, K., Anand, N., Satheesh, S. K., Krishna Moorthy, K., & Ilavazhagan, G. (2019, April 9). Performance of free-space optical communication systems: effect of aerosol-induced lower atmospheric warming. Optics Express, 27(8), 11303.

Yasir, S. M., Abas, N., Rauf, S., Saleem, M. S., & Haider, A. (2022). Performance Analysis of Dual-Beam Free Space Optical Communication Link under Dust and Rain Conditions. Wireless Communications and Mobile Computing, 2022, 1–15.

Yang, F., Cheng, J. & Tsiftsis, T. (2014). Free-space optical communication with nonzero boresight pointing errors. IEEE Transactions on Communication, 62(2), 713-725. DOI: 10.1109/TCOMM.2014.010914.130249

How to Cite
Islam, A. K. M. N., & Majumder, S. P. (2023). Bit Error Rate Performance in CDMA Free Space Optical Links with SIK Receiver under Fog Conditions. MIST INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY, 11(2), 81-86.