Antibacterial/Antiviral Face Masks: Processing, Characteristics, Challenges, and Sustainability

  • Md Enamul Hoque Department of Biomedical Engineering, Military Institute of Science and Technology (MIST), Dhaka, Bangladesh
  • Mirajul Alam Sarker Department of Biomedical Engineering, Military Institute of Science and Technology (MIST), Dhaka, Bangladesh
  • Kiswa Arif Department of Biomedical Engineering, Military Institute of Science and Technology (MIST), Dhaka, Bangladesh
  • M. Azam Ali Centre for Bioengineering & Nanomedicine, Division of Health Sciences, University of Otago, Dunedin 9054, New Zealand
  • Tarek El-Bialy Department of Orthodontics and Biomedical Engineering, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
Keywords: Antibacterial, Antiviral, Face mask, COVID-19, Pandemic

Abstract

The face mask has become a part of our daily life after the emergence of SAR-CoV-2, commonly known as the novel coronavirus 2019 or, COVID-19 all over the world. On a day-to-day basis, previously the face mask has been used to filter airborne particles entering the body and affecting the respiratory system, especially by individuals in pollution-prone areas. But as the pathogens having severe acute respiratory disease-causing abilities emerge with the potential to create a pandemic, the necessity of virus/bacteria killing ability along with the filtration efficiency of the face mask has come into account. Existing ordinary face masks have filtration capacity only. Sometimes it cannot restrict particles and pathogens of nano or even micro-scale. Moreover, when it is disposed of after use, it can be a potential source of pathogen transmission. Therefore, the development of antiviral/antibacterial face masks is the need of the hour. This article focuses on the advancement of face mask processing methods, existing and promising antibacterial/antiviral agents, socio-economic sustainability, and challenges in achieving the goal of a green environment. Besides, various characteristics of the face mask like swelling and degradation properties, morphologies (SEM, FESEM), mechanical strength, antioxidant property, and antimicrobial activity are also revealed. Lastly, some future perspectives and directives are accordingly discussed with the hope that the grim of any future pandemic should not shroud us and make the world stalled again.

Downloads

Download data is not yet available.

References

Abbaszadegan, A., Dadolahi, S., Gholami, A., Moein, M. R., Hamedani, S., Ghasemi, Y., & Abbott, P. V. (2016). Antimicrobial and Cytotoxic Activity of Cinnamomum zeylanicum, Calcium Hydroxide, and Triple Antibiotic Paste as Root Canal Dressing Materials. The Journal of Contemporary Dental Practice, 17(2), 105–113. https://doi.org/10.5005/jp-journals-10024-1811

Adanur, S., & Jayswal, A. (2022). Filtration mechanisms and manufacturing methods of face masks: An overview. Journal of Industrial Textiles, 51(3), 3683S-3717S. https://doi.org/10.1177/1528083720980169

Anees Ahmad, S., Sachi Das, S., Khatoon, A., Tahir Ansari, M., Afzal, Mohd., Saquib Hasnain, M., & Kumar Nayak, A. (2020). Bactericidal activity of silver nanoparticles: A mechanistic review. Materials Science for Energy Technologies, 3, 756–769. https://doi.org/10.1016/j.mset.2020.09.002

Ansari, M. A., Albetran, H. M., Alheshibri, M. H., Timoumi, A., Algarou, N. A., Akhtar, S., Slimani, Y., Almessiere, M. A., Alahmari, F. S., Baykal, A., & Low, I. M. (2020). Synthesis of Electrospun TiO2 Nanofibers and Characterization of Their Antibacterial and Antibiofilm Potential against Gram-Positive and Gram-Negative Bacteria. Antibiotics, 9(9), 572. https://doi.org/10.3390/ANTIBIOTICS9090572

Anti-viral Coatings: Protecting Your Health or the Durability of the Item? (2020). Focus on Powder Coatings, 2020(7), 1. https://doi.org/10.1016/j.fopow.2020.05.037

Aragaw, T. A. (2020). Surgical face masks as a potential source for microplastic pollution in the COVID-19 scenario. Marine Pollution Bulletin, 159, 111517. https://doi.org/10.1016/J.MARPOLBUL.2020.111517

Arvidson, S. A., Khan, S. A., & Gorga, R. E. (2010). Mesomorphic-α-monoclinic phase transition in isotactic polypropylene: A study of processing effects on structure and mechanical properties. Macromolecules, 43(6), 2916–2924. https://doi.org/10.1021/ma1001645

Babaahmadi, V., Amid, H., Naeimirad, M., & Ramakrishna, S. (2021). Biodegradable and multifunctional surgical face masks: A brief review on demands during COVID-19 pandemic, recent developments, and future perspectives. Science of The Total Environment, 798, 149233. https://doi.org/10.1016/J.SCITOTENV.2021.149233

Bai, R., Zhang, Q., Li, L., Li, P., Wang, Y. J., Simalou, O., Zhang, Y., Gao, G., & Dong, A. (2016). N-halamine-containing electrospun fibers kill bacteria via a contact/release co-determined antibacterial pathway. ACS Applied Materials and Interfaces, 8(46), 31530–31540. https://doi.org/10.1021/acsami.6b08431

Balagna, C., Perero, S., Percivalle, E., Nepita, E. V., & Ferraris, M. (2020). Virucidal effect against coronavirus SARS-CoV-2 of a silver nanocluster/silica composite sputtered coating. Open Ceramics, 1, 100006. https://doi.org/10.1016/J.OCERAM.2020.100006

Barbosa, M. H., & Graziano, K. U. (2006). Influence of wearing time on efficacy of disposable surgical masks as microbial barrier. Brazilian Journal of Microbiology, 37(3), 216–217. https://doi.org/10.1590/S1517-83822006000300003

Behera, B. K., & Arora, H. (2009). Surgical gown: A critical review. Journal of Industrial Textiles, 38(3), 205–231. https://doi.org/10.1177/1528083708091251

Bhat, G. (2015). Melt blown Polymeric Nanofibers for Medical Applications- An Overview. Nanoscience & Technology: Open Access, 2(1). https://doi.org/10.15226/2374-8141/2/1/00125

Bolaina-Lorenzo, E., Puente-Urbina, B. A., Espinosa-Neira, R., Ledezma, A., Rodríguez-Fernández, O., & Betancourt-Galindo, R. (2022). A simple method to improve antibacterial properties in commercial face masks via incorporation of ZnO and CuO nanoparticles through chitosan matrix. Materials Chemistry and Physics, 287, 126299. https://doi.org/10.1016/J.MATCHEMPHYS.2022.126299

Bouhdid, S., Abrini, J., Amensour, M., Zhiri, A., Espuny, M. J., & Manresa, A. (2010). Functional and ultrastructural changes in Pseudomonas aeruginosa and Staphylococcus aureus cells induced by Cinnamomum verum essential oil. Journal of Applied Microbiology, 109(4), 1139–1149. https://doi.org/10.1111/j.1365-2672.2010.04740.x

Bradsher, K., & Alderman, L. (2020, March 13). The World Needs Masks. China Makes Them, but Has Been Hoarding Them. The New York Times. https://www.nytimes.com/2020/03/13/business/masks-china-coronavirus.html

Bresee, R. R., & Ko, W.-C. (2003). Fiber Formation during Melt Blowing. International Nonwovens Journal, os-12(2), 1558925003os–155892500312. https://doi.org/10.1177/1558925003os-1200209

Brnawi, W. I., Hettiarachchy, N. S., Horax, R., Kumar-Phillips, G., & Ricke, S. (2019). Antimicrobial activity of leaf and bark cinnamon essential oils against Listeria monocytogenes and Salmonella typhimurium in broth system and on celery. Journal of Food Processing and Preservation, 43(3), e13888. https://doi.org/10.1111/jfpp.13888

Brochocka, A. (2017). Filtration Properties of Nonwoven Structures with Superabsorbents for Respiratory Protective Devices. Fibres and Textiles in Eastern Europe, 25(0), 62–67. https://doi.org/10.5604/01.3001.0010.1691

Camacho-Cruz, L. A., Velazco-Medel, M. A., Cruz-Gómez, A., & Bucio, E. (2021). Antimicrobial Polymers. In Inamuddin, M. I. Ahamed, & R. Prasad (Eds.), Advanced Antimicrobial Materials and Applications (pp. 1–42). Springer. https://doi.org/10.1007/978-981-15-7098-8_1

Capezza, A. J., Lundman, M., Olsson, R. T., Newson, W. R., Hedenqvist, M. S., & Johansson, E. (2020). Carboxylated Wheat Gluten Proteins: A Green Solution for Production of Sustainable Superabsorbent Materials. Biomacromolecules, 21(5), 1709–1719. https://doi.org/10.1021/acs.biomac.9b01646

Chen, A. X., Lau, H. Y., Teo, J. Y., Wang, Y., Choong, D. Z. Y., Wang, Y., Luo, H.-K., Yang, Y. Y., & Li, N. (2023). Water-Mediated In Situ Fabrication of CuI Nanoparticles on Flexible Cotton Fabrics as a Sustainable and Skin-Compatible Coating with Broad-Spectrum Antimicrobial Efficacy. ACS Applied Nano Materials, 6(14), 13238–13249. https://doi.org/10.1021/acsanm.3c01961

Chen, P., Yang, Z., Mai, Z., Huang, Z., Bian, Y., Wu, S., Dong, X., Fu, X., Ko, F., Zhang, S., Zheng, W., Zhang, S., & Zhou, W. (2022). Electrospun nanofibrous membrane with antibacterial and antiviral properties decorated with Myoporum bontioides extract and silver-doped carbon nitride nanoparticles for medical masks application. Separation and Purification Technology, 298, 121565. https://doi.org/10.1016/j.seppur.2022.121565

Cheung, E. C., & Vousden, K. H. (2022). The role of ROS in tumour development and progression. Nature Reviews Cancer, 22(5), Article 5. https://doi.org/10.1038/s41568-021-00435-0

Chinnappan, B. A., Krishnaswamy, M., Xu, H., & Hoque, M. E. (2022). Electrospinning of Biomedical Nanofibers/Nanomembranes: Effects of Process Parameters. https://doi.org/10.3390/polym14183719

Chowdhury, M. A., Shuvho, M. B. A., Shahid, M. A., Haque, A. K. M. M., Kashem, M. A., Lam, S. S., Ong, H. C., Uddin, M. A., & Mofijur, M. (2021). Prospect of biobased antiviral face mask to limit the coronavirus outbreak. Environmental Research, 192, 110294. https://doi.org/10.1016/j.envres.2020.110294

Chudasama, B., Vala, A. K., Andhariya, N., Mehta, R. V., & Upadhyay, R. V. (2010). Highly bacterial resistant silver nanoparticles: Synthesis and antibacterial activities. Journal of Nanoparticle Research, 12(5), 1677–1685. https://doi.org/10.1007/s11051-009-9845-1

Cuervo-Rodríguez, R., Muñoz-Bonilla, A., López-Fabal, F., & Fernández-García, M. (2020). Hemolytic and Antimicrobial Activities of a Series of Cationic Amphiphilic Copolymers Comprised of Same Centered Comonomers with Thiazole Moieties and Polyethylene Glycol Derivatives. Polymers, 12(4), Article 4. https://doi.org/10.3390/polym12040972

Cui, H., Zhang, C., Li, C., & Lin, L. (2018). Antimicrobial mechanism of clove oil on Listeria monocytogenes. Food Control, 94, 140–146. https://doi.org/10.1016/j.foodcont.2018.07.007

Daharia, A., Jaiswal, V. K., Royal, K. P., Sharma, H., Joginath, A. K., Kumar, R., & Saha, P. (2022). A Comparative review on ginger and garlic with their pharmacological Action. Asian Journal of Pharmaceutical Research and Development, 10(3), 65–69. https://doi.org/10.22270/ajprd.v10i3.1147

Demir, B., Cerkez, I., Worley, S. D., Broughton, R. M., & Huang, T. S. (2015). N-halamine-modified antimicrobial polypropylene nonwoven fabrics for use against airborne bacteria. ACS Applied Materials and Interfaces, 7(3), 1752–1757. https://doi.org/10.1021/am507329m

Duncan, S., Bodurtha, P., & Naqvi, S. (2021). The protective performance of reusable cloth face masks, disposable procedure masks, KN95 masks and N95 respirators: Filtration and total inward leakage. PLOS ONE, 16(10), e0258191. https://doi.org/10.1371/JOURNAL.PONE.0258191

El-hadi, A. M., & Al-Jabri, F. Y. (2016). Influence of electrospinning parameters on fiber diameter and mechanical properties of poly(3-Hydroxybutyrate) (PHB) and polyanilines (PANI) blends. Polymers, 8(3). https://doi.org/10.3390/polym8030097

Hoque, M. E., Peiris, A. M., Rahman, S. M. A., & Wahab, M. A. (2018). New Generation Antibacterial Nanofibrous Membrane for Potential Water Filtration. Current Analytical Chemistry, 14(3), 278–284. DOI: 10.2174/1573411013666171009162832

Erkoc, P., & Ulucan-Karnak, F. (2021). Nanotechnology-Based Antimicrobial and Antiviral Surface Coating Strategies. Prosthesis, 3(1), Article 1. https://doi.org/10.3390/prosthesis3010005

Esmaeili, F., Rezayat, S. M., Saeedi, Y., & Mehravi, B. (2019). Polymer-Based Nanofibers: Preparation, Fabrication, and Applications.

Farshbaf, M., Davaran, S., Zarebkohan, A., Annabi, N., Akbarzadeh, A., & Salehi, R. (2018). Significant role of cationic polymers in drug delivery systems. Artificial Cells, Nanomedicine, and Biotechnology, 46(8), 1872–1891. https://doi.org/10.1080/21691401.2017.1395344

Fennelly, K. P. (2020). Particle sizes of infectious aerosols: Implications for infection control. The Lancet Respiratory Medicine, 8(9), 914–924. https://doi.org/10.1016/S2213-2600(20)30323-4

Friedman, M., Henika, P. R., & Mandrell, R. E. (2002). Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. Journal of Food Protection, 65(10), 1545–1560. https://doi.org/10.4315/0362-028x-65.10.1545

Gabriel, T., Vestine, A., Kim, K. D., Kwon, S. J., Sivanesan, I., & Chun, S. C. (2022). Antibacterial Activity of Nanoparticles of Garlic (Allium sativum) Extract against Different Bacteria Such as Streptococcus mutans and Poryphormonas gingivalis. Applied Sciences, 12(7), Article 7. https://doi.org/10.3390/app12073491

Gacem, M. A., Gacem, H., & Ould-El-Hadj-Khelil, A. (2020). Nanocarbons: Antibacterial, antifungal, and antiviral activity and the underlying mechanism. In Carbon Nanomaterials for Agri-Food and Environmental Applications (pp. 505–533). Elsevier. https://doi.org/10.1016/B978-0-12-819786-8.00022-0

Ghatak, B., Banerjee, S., Ali, S. B., Bandyopadhyay, R., Das, N., Mandal, D., & Tudu, B. (2021). Design of a self-powered triboelectric face mask. Nano Energy, 79, 105387. https://doi.org/10.1016/j.nanoen.2020.105387

Ghetas, H. A., Abdel-Razek, N., Shakweer, M. S., Abotaleb, M. M., Ahamad Paray, B., Ali, S., Eldessouki, E. A., Dawood, M. A. O., & Khalil, R. H. (2022). Antimicrobial activity of chemically and biologically synthesized silver nanoparticles against some fish pathogens. Saudi Journal of Biological Sciences, 29(3), 1298–1305. https://doi.org/10.1016/j.sjbs.2021.11.015

Gitika, A., Mishra, R., Panda, S., Mishra, C., Sahoo, P., & Sahoo, P. R. (2019). Evaluation of Antifungal Activity of Curcumin against Aspergillus flavus. International Journal of Current Microbiology and Applied Sciences, 8, xx–xx. https://doi.org/10.20546/ijcmas.2019.807.284

Gu, X., Xu, Z., Gu, L., Xu, H., Han, F., Chen, B., & Pan, X. (2021). Preparation and antibacterial properties of gold nanoparticles: A review. Environmental Chemistry Letters, 19(1), 167–187. https://doi.org/10.1007/s10311-020-01071-0

Gurunathan, S., Qasim, M., Choi, Y., Do, J. T., Park, C., Hong, K., Kim, J.-H., & Song, H. (2020). Antiviral Potential of Nanoparticles—Can Nanoparticles Fight Against Coronaviruses? Nanomaterials, 10(9), Article 9. https://doi.org/10.3390/nano10091645

Hameed, S., Wang, Y., Zhao, L., Xie, L., & Ying, Y. (2020). Shape-dependent significant physical mutilation and antibacterial mechanisms of gold nanoparticles against foodborne bacterial pathogens (Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus) at lower concentrations. Materials Science and Engineering: C, 108, 110338. https://doi.org/10.1016/j.msec.2019.110338

Haque, M. S., Sharif, S., Masnoon, A., & Rashid, E. (2021). SARS-CoV-2 pandemic-induced PPE and single-use plastic waste generation scenario. Waste Management and Research, 39(1_suppl), 3–17. https://doi.org/10.1177/0734242X20980828

Heidary, M., Zaker Bostanabad, S., Amini, S. M., Jafari, A., Ghalami Nobar, M., Ghodousi, A., Kamalzadeh, M., & Darban-Sarokhalil, D. (2019). The Anti-Mycobacterial Activity Of Ag, ZnO, And Ag- ZnO Nanoparticles Against MDR- And XDR-Mycobacterium tuberculosis. Infection and Drug Resistance, 12, 3425–3435. https://doi.org/10.2147/IDR.S221408

Heredia-Guerrero, J. A., Ceseracciu, L., Guzman-Puyol, S., Paul, U. C., Alfaro-Pulido, A., Grande, C., Vezzulli, L., Bandiera, T., Bertorelli, R., Russo, D., Athanassiou, A., & Bayer, I. S. (2018). Antimicrobial, antioxidant, and waterproof RTV silicone-ethyl cellulose composites containing clove essential oil. Carbohydrate Polymers, 192, 150–158. https://doi.org/10.1016/j.carbpol.2018.03.050

Hiragond, C. B., Kshirsagar, A. S., Dhapte, V. V., Khanna, T., Joshi, P., & More, P. V. (2018). Enhanced anti-microbial response of commercial face mask using colloidal silver nanoparticles. Vacuum, 156(August), 475–482. https://doi.org/10.1016/j.vacuum.2018.08.007

Hossain, Md. M., Polash, S. A., Takikawa, M., Shubhra, R. D., Saha, T., Islam, Z., Hossain, S., Hasan, Md. A., Takeoka, S., & Sarker, S. R. (2019). Investigation of the Antibacterial Activity and in vivo Cytotoxicity of Biogenic Silver Nanoparticles as Potent Therapeutics. Frontiers in Bioengineering and Biotechnology, 7. https://www.frontiersin.org/articles/10.3389/fbioe.2019.00239

Hu, W., Peng, C., Luo, W., Lv, M., Li, X., Li, D., Huang, Q., & Fan, C. (2010). Graphene-Based Antibacterial Paper. ACS Nano, 4(7), 4317–4323. https://doi.org/10.1021/nn101097v

Huang, L., Jia, S., Wu, R., Chen, Y., Ding, S., Dai, C., & He, R. (2022). The structure, antioxidant and antibacterial properties of thiol-modified soy protein isolate induced by allicin. Food Chemistry, 396, 133713. https://doi.org/10.1016/j.foodchem.2022.133713

Huang, S., Gu, J., Ye, J., Fang, B., Wan, S., Wang, C., Ashraf, U., Li, Q., Wang, X., Shao, L., Song, Y., Zheng, X., Cao, F., & Cao, S. (2019). Benzoxazine monomer derived carbon dots as a broad-spectrum agent to block viral infectivity. Journal of Colloid and Interface Science, 542, 198–206. https://doi.org/10.1016/j.jcis.2019.02.010

Huh, A. J., & Kwon, Y. J. (2011). “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of Controlled Release, 156(2), 128–145. https://doi.org/10.1016/j.jconrel.2011.07.002

Iannazzo, D., Pistone, A., Galvagno, S., Ferro, S., De Luca, L., Monforte, A. M., Da Ros, T., Hadad, C., Prato, M., & Pannecouque, C. (2015). Synthesis and anti-HIV activity of carboxylated and drug-conjugated multi-walled carbon nanotubes. Carbon, 82, 548–561. https://doi.org/10.1016/j.carbon.2014.11.007

Idrees, M., Akbar, A., Mohamed, A. M., Fathi, D., & Saeed, F. (2022). Recycling of Waste Facial Masks as a Construction Material, a Step towards Sustainability. Materials 2022, Vol. 15, Page 1810, 15(5), 1810. https://doi.org/10.3390/MA15051810

Idris, N. A., Yasin, H. M., & Usman, A. (2019). Voltammetric and spectroscopic determination of polyphenols and antioxidants in ginger (Zingiber officinale Roscoe). Heliyon, 5(5), e01717. https://doi.org/10.1016/j.heliyon.2019.e01717

Jain, A., Duvvuri, L. S., Farah, S., Beyth, N., Domb, A. J., & Khan, W. (2014). Antimicrobial Polymers. Advanced Healthcare Materials, 3(12), 1969–1985. https://doi.org/10.1002/adhm.201400418

Jones, R. M., & Rempel, D. (2021). Standards for Surgical Respirators and Masks: Relevance for Protecting Healthcare Workers and the Public during Pandemics. Annals of Work Exposures and Health, 65(5), 495–504. https://doi.org/10.1093/annweh/wxab008

Jung, S., Byeon, E. Y., Kim, D. G., Lee, D. G., Ryoo, S., Lee, S., Shin, C. W., Jang, H. W., Yang, J. Y., Kim, H. J., & Lee, S. (2021). Copper-Coated Polypropylene Filter Face Mask with SARS-CoV-2 Antiviral Ability. Polymers 2021, Vol. 13, Page 1367, 13(9), 1367. https://doi.org/10.3390/POLYM13091367

Kalebek, N. A. (2022). Fastness and antibacterial properties of polypropylene surgical face masks dyed with coffee grounds. Journal of the Textile Institute, 113(7), 1309–1315. https://doi.org/10.1080/00405000.2021.1926129

Keavey, M. (2004). International Journal of Numerical Methods for Heat and Fluid Flow: Editorial. International Journal of Numerical Methods for Heat and Fluid Flow, 14(4), 411–412.

Kim, J., Yeom, M., Lee, T., Kim, H.-O., Na, W., Kang, A., Lim, J.-W., Park, G., Park, C., Song, D., & Haam, S. (2020). Porous gold nanoparticles for attenuating infectivity of influenza A virus. Journal of Nanobiotechnology, 18(1), 54. https://doi.org/10.1186/s12951-020-00611-8

Kornev, A. B., Peregudov, A. S., Martynenko, V. M., Balzarini, J., Hoorelbeke, B., & Troshin, P. A. (2011). Synthesis and antiviral activity of highly water-soluble polycarboxylic derivatives of [70]fullerene. Chemical Communications, 47(29), 8298–8300. https://doi.org/10.1039/C1CC12209F

Kuo, Y.-L., Wang, S.-G., Wu, C.-Y., Lee, K.-C., Jao, C.-J., Chou, S.-H., & Chen, Y.-C. (2016). Functional gold nanoparticle-based antibacterial agents for nosocomial and antibiotic-resistant bacteria. Nanomedicine, 11(19), 2497–2510. https://doi.org/10.2217/nnm-2016-0232

Kwon, K. Y., Cheeseman, S., Frias-De-Diego, A., Hong, H., Yang, J., Jung, W., Yin, H., Murdoch, B. J., Scholle, F., Crook, N., Crisci, E., Dickey, M. D., Truong, V. K., & Kim, T. (2021). A Liquid Metal Mediated Metallic Coating for Antimicrobial and Antiviral Fabrics. Advanced Materials, 33(45), 2104298. https://doi.org/10.1002/adma.202104298

Lackowski, M., Krupa, A., & Jaworek, A. (2011). Nonwoven filtration mat production by electrospinning method. Journal of Physics: Conference Series, 301(1), 012013. https://doi.org/10.1088/1742-6596/301/1/012013

Lavaee, F., Ranjbar, Z., Modaresi, F., & Keshavarz, F. (2021). The Effect of Gold Nano Particles with Different Sizes on Streptococcus Species. Journal of Dentistry, 22(4), 235–242. https://doi.org/10.30476/DENTJODS.2021.85219.1119

Lee, K. P., Yip, J., Kan, C. W., Chiou, J. C., & Yung, K. F. (2020). Reusable Face Masks as Alternative for Disposable Medical Masks: Factors that Affect their Wear-Comfort. International Journal of Environmental Research and Public Health 2020, Vol. 17, Page 6623, 17(18), 6623. https://doi.org/10.3390/IJERPH17186623

Leung, W. W. F., & Sun, Q. (2020). Electrostatic charged nanofiber filter for filtering airborne novel coronavirus (COVID-19) and nano-aerosols. Separation and Purification Technology, 250, 116886. https://doi.org/10.1016/j.seppur.2020.116886

Li, Y., Leung, P., Yao, L., Song, Q. W., & Newton, E. (2006). Antimicrobial effect of surgical masks coated with nanoparticles. Journal of Hospital Infection, 62(1), 58–63. https://doi.org/10.1016/j.jhin.2005.04.015

Li, Y., Qin, T., Ingle, T., Yan, J., He, W., Yin, J.-J., & Chen, T. (2017). Differential genotoxicity mechanisms of silver nanoparticles and silver ions. Archives of Toxicology, 91(1), 509–519. https://doi.org/10.1007/s00204-016-1730-y

Lin, S., Kantor, R., & Clark, E. (2021). Coronavirus Disease 2019. In Clinics in Geriatric Medicine (Vol. 37, Issue 4). https://doi.org/10.1016/j.cger.2021.05.001

Lin, Z., Wang, Z., Zhang, X., & Diao, D. (2021). Superhydrophobic, photo-sterilize, and reusable mask based on graphene nanosheet-embedded carbon (GNEC) film. Nano Research, 14(4), 1110–1115. https://doi.org/10.1007/s12274-020-3158-1

Liu, S., Zeng, T. H., Hofmann, M., Burcombe, E., Wei, J., Jiang, R., Kong, J., & Chen, Y. (2011). Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano, 5(9), 6971–6980. https://doi.org/10.1021/nn202451x

Łoczechin, A., Séron, K., Barras, A., Giovanelli, E., Belouzard, S., Chen, Y.-T., Metzler-Nolte, N., Boukherroub, R., Dubuisson, J., & Szunerits, S. (2019). Functional Carbon Quantum Dots as Medical Countermeasures to Human Coronavirus. ACS Applied Materials & Interfaces, 11(46), 42964–42974. https://doi.org/10.1021/acsami.9b15032

Long, K. D., Woodburn, E. V., Berg, I. C., Chen, V., & Scott, W. S. (2020). Measurement of filtration efficiencies of healthcare and consumer materials using modified respirator fit tester setup. PLoS ONE, 15(10 October). https://doi.org/10.1371/JOURNAL.PONE.0240499

Loo, Y. Y., Rukayadi, Y., Nor-Khaizura, M.-A.-R., Kuan, C. H., Chieng, B. W., Nishibuchi, M., & Radu, S. (2018). In Vitro Antimicrobial Activity of Green Synthesized Silver Nanoparticles Against Selected Gram-negative Foodborne Pathogens. Frontiers in Microbiology, 9. https://www.frontiersin.org/articles/10.3389/fmicb.2018.01555

Lou, L. H., Qin, X. H., & Zhang, H. (2017). Preparation and study of low-resistance polyacrylonitrile nano membranes for gas filtration. Textile Research Journal, 87(2), 208–215. https://doi.org/10.1177/0040517515627171

Majchrzycka, K., Gutarowska, B., Brochocka, A., & Brycki, B. (2012). New filtering antimicrobial nonwovens with various carriers for biocides as respiratory protective materials against bioaerosol. International Journal of Occupational Safety and Ergonomics : JOSE, 18(3), 375–385. https://doi.org/10.1080/10803548.2012.11076944

Meléndez-Villanueva, M. A., Morán-Santibañez, K., Martínez-Sanmiguel, J. J., Rangel-López, R., Garza-Navarro, M. A., Rodríguez-Padilla, C., Zarate-Triviño, D. G., & Trejo-Ávila, L. M. (2019). Virucidal Activity of Gold Nanoparticles Synthesized by Green Chemistry Using Garlic Extract. Viruses, 11(12), E1111. https://doi.org/10.3390/v11121111

Mezzer, B. B. M., & N, A. F. V. C. (1973). M. MeZzer,. 1973.

Midha, V. K., & Dakuri, A. (2017). Spun bonding Technology and Fabric Properties: A Review. Journal of Textile Engineering & Fashion Technology, 1(4), 126–133. https://doi.org/10.15406/jteft.2017.01.00023

Mol, M. P. G., & Caldas, S. (2020). Can the human coronavirus epidemic also spread through solid waste? Https://Doi.Org/10.1177/0734242X20918312, 38(5), 485–486. https://doi.org/10.1177/0734242X20918312

Monge, F. A., Jagadesan, P., Bondu, V., Donabedian, P. L., Ista, L., Chi, E. Y., Schanze, K. S., Whitten, D. G., & Kell, A. M. (2020). Highly Effective Inactivation of SARS-CoV-2 by Conjugated Polymers and Oligomers. Cite This: ACS Appl. Mater. Interfaces, 12, 55695. https://doi.org/10.1021/acsami.0c17445

Nair, L. S., & Laurencin, C. T. (2007). Biodegradable polymers as biomaterials. Progress in Polymer Science, 32(8–9), 762–798. https://doi.org/10.1016/J.PROGPOLYMSCI.2007.05.017

Naragund, V. S., & Panda, P. K. (2022). Electrospun nanofiber-based respiratory face masks-a review. Emergent Materials, 5(2), 261–278. https://doi.org/10.1007/S42247-022-00350-6

Nasri, N., Rusli, A., Teramoto, N., Jaafar, M., Ku Ishak, K. M., Shafiq, M. D., & Abdul Hamid, Z. A. (2021). Past and Current Progress in the Development of Antiviral/Antimicrobial Polymer Coating towards COVID-19 Prevention: A Review. Polymers, 13(23), Article 23. https://doi.org/10.3390/polym13234234

Otrisal, P., Bungau, C., Obsel, V., Melicharik, Z., & Tont, G. (2021). Selected respiratory protective devices: Respirators and significance of some markings. Sustainability (Switzerland), 13(9). https://doi.org/10.3390/su13094988

Pabjańczyk-Wlazło, E. K., Puszkarz, A. K., Bednarowicz, A., Tarzyńska, N., & Sztajnowski, S. (2022). The Influence of Surface Modification with Biopolymers on the Structure of Melt-Blown and Spun-Bonded Poly(lactic acid) Nonwovens. Materials, 15(20), Article 20. https://doi.org/10.3390/ma15207097

Parham, S., Kharazi, A. Z., Bakhsheshi-Rad, H. R., Nur, H., Ismail, A. F., Sharif, S., RamaKrishna, S., & Berto, F. (2020). Antioxidant, Antimicrobial and Antiviral Properties of Herbal Materials. Antioxidants, 9(12), 1309. https://doi.org/10.3390/antiox9121309

Pei, L., Zhou, J., & Zhang, L. (2013). Preparation and properties of Ag-coated activated carbon nanocomposites for indoor air quality control. Building and Environment, 63, 108–113. https://doi.org/10.1016/j.buildenv.2013.02.010

Peng, C., Vishwakarma, A., Mankoci, S., Barton, H. A., & Joy, A. (2019). Structure–Activity Study of Antibacterial Poly(ester urethane)s with Uniform Distribution of Hydrophobic and Cationic Groups. Biomacromolecules, 20(4), 1675–1682. https://doi.org/10.1021/acs.biomac.9b00029

Pippin, D. J., Verderame, R. A., & Weber, K. K. (1987). Lnhala tion of Airborne Contaminants. Journal of Oral and Maxillofacial Surgery, 45, 319–323.

Pu, Y., Zheng, J., Chen, F., Long, Y., Wu, H., Li, Q., Yu, S., Wang, X., & Ning, X. (2018). Preparation of polypropylene micro and nanofibers by electrostatic-assisted melt blown and their application. Polymers, 10(9), 1–12. https://doi.org/10.3390/polym10090959

Pullangott, G., Kannan, U., S, G., Venkata Kiran, D., & M. Maliyekkal, S. (2021). A comprehensive review on antimicrobial face masks: An emerging weapon in fighting pandemics. RSC Advances, 11(12), 6544–6576. https://doi.org/10.1039/D0RA10009A

Purwar, R., Sai Goutham, K., & Srivastava, C. M. (2016). Electrospun Sericin/PVA/Clay nanofibrous mats for antimicrobial air filtration mask. Fibers and Polymers, 17(8), 1206–1216. https://doi.org/10.1007/s12221-016-6345-7

Quan, F.-S., Rubino, I., Lee, S.-H., Koch, B., & Choi, H.-J. (2017). Universal and reusable virus deactivation system for respiratory protection. Scientific Reports, 7(1), Article 1. https://doi.org/10.1038/srep39956

Radünz, M., da Trindade, M. L. M., Camargo, T. M., Radünz, A. L., Borges, C. D., Gandra, E. A., & Helbig, E. (2019). Antimicrobial and antioxidant activity of unencapsulated and encapsulated clove (Syzygium aromaticum, L.) essential oil. Food Chemistry, 276, 180–186. https://doi.org/10.1016/j.foodchem.2018.09.173

Reid, A. J., Carlson, A. K., Creed, I. F., Eliason, E. J., Gell, P. A., Johnson, P. T. J., Kidd, K. A., MacCormack, T. J., Olden, J. D., Ormerod, S. J., Smol, J. P., Taylor, W. W., Tockner, K., Vermaire, J. C., Dudgeon, D., & Cooke, S. J. (2019). Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews, 94(3), 849–873. https://doi.org/10.1111/BRV.12480

Ren, T., Dormitorio, T. V., Qiao, M., Huang, T. S., & Weese, J. (2018). N-halamine incorporated antimicrobial nonwoven fabrics for use against avian influenza virus. Veterinary Microbiology, 218(March), 78–83. https://doi.org/10.1016/j.vetmic.2018.03.032

Reyes-Jurado, F., Navarro-Cruz, A. R., Ochoa-Velasco, C. E., Palou, E., López-Malo, A., & Ávila-Sosa, R. (2020). Essential oils in vapor phase as alternative antimicrobials: A review. Critical Reviews in Food Science and Nutrition, 60(10), 1641–1650. https://doi.org/10.1080/10408398.2019.1586641

Rist, S., Carney Almroth, B., Hartmann, N. B., & Karlsson, T. M. (2018). A critical perspective on early communications concerning human health aspects of microplastics. Science of The Total Environment, 626, 720–726. https://doi.org/10.1016/J.SCITOTENV.2018.01.092

Saberian, M., Li, J., Kilmartin-Lynch, S., & Boroujeni, M. (2021). Repurposing of COVID-19 single-use face masks for pavements base/subbase. Science of The Total Environment, 769, 145527. https://doi.org/10.1016/J.SCITOTENV.2021.145527

Salam, A., Hassan, T., Jabri, T., Riaz, S., Khan, A., Iqbal, K. M., Khan, S. ullah, Wasim, M., Shah, M. R., Khan, M. Q., & Kim, I.-S. (2021). Electrospun Nanofiber-Based Viroblock/ZnO/PAN Hybrid Antiviral Nanocomposite for Personal Protective Applications. Nanomaterials, 11(9), 2208. https://doi.org/10.3390/nano11092208

Saliu, F., Veronelli, M., Raguso, C., Barana, D., Galli, P., & Lasagni, M. (2021). The release process of microfibers: From surgical face masks into the marine environment. Environmental Advances, 4, 100042. https://doi.org/10.1016/J.ENVADV.2021.100042

Samal, S. K., Dash, M., Vlierberghe, S. V., Kaplan, D. L., Chiellini, E., Blitterswijk, C. van, Moroni, L., & Dubruel, P. (2012). Cationic polymers and their therapeutic potential. Chemical Society Reviews, 41(21), 7147–7194. https://doi.org/10.1039/C2CS35094G

Schorderet Weber, S., Bulliard, X., Bonfante, R., Xiang, Y., Biselli, S., Steiner, S., Constant, S., Pugin, R., Laurent, A., Majeed, S., Lebrun, S., Palmieri, M., Hogg, A., Kuczaj, A., Peitsch, M. C., Hoeng, J., & Stan, A. (2022). In vitro testing of salt coating of fabrics as a potential antiviral agent in reusable face masks. Scientific Reports 2022 12:1, 12(1), 1–13. https://doi.org/10.1038/s41598-022-21442-7

Schrank, C. L., Minbiole, K. P. C., & Wuest, W. M. (2020). Are Quaternary Ammonium Compounds, the Workhorse Disinfectants, Effective against Severe Acute Respiratory Syndrome-Coronavirus-2? ACS Infectious Diseases, 6(7), 1553–1557. https://doi.org/10.1021/ACSINFECDIS.0C00265/ASSET/IMAGES/LARGE/ID0C00265_0005.JPEG

Shabatina, T., Vernaya, O., Shumilkin, A., Semenov, A., & Melnikov, M. (2022). Nanoparticles of Bioactive Metals/Metal Oxides and Their Nanocomposites with Antibacterial Drugs for Biomedical Applications. Materials, 15(10), Article 10. https://doi.org/10.3390/ma15103602

Shalaby, M. T., Ghanem, A. A., & Maamon, H. M. (2016). Protective Effect of Ginger and Cactus Saguaro Extract Against Cancer Formation Cells. Journal of Food and Dairy Sciences, 7(11), 487–491. https://doi.org/10.21608/jfds.2016.46069

Shen, M., Ye, S., Zeng, G., Zhang, Y., Xing, L., Tang, W., Wen, X., & Liu, S. (2020). Can microplastics pose a threat to ocean carbon sequestration? Marine Pollution Bulletin, 150, 110712. https://doi.org/10.1016/J.MARPOLBUL.2019.110712

Singh, D. B., Maurya, A., & Rai, D. (2019). Antibacterial and Anticancer Activities of Turmeric and its Active Ingredient Curcumin, and Mechanism of Action (pp. 74–103). https://doi.org/10.2174/9781681087511119010006

Singh, R. K., Behera, S. S., Singh, K. R., Mishra, S., Panigrahi, B., Sahoo, T. R., Parhi, P. K., & Mandal, D. (2020). Biosynthesized gold nanoparticles as photocatalysts for selective degradation of cationic dye and their antimicrobial activity. Journal of Photochemistry and Photobiology A: Chemistry, 400, 112704. https://doi.org/10.1016/j.jphotochem.2020.112704

Soltani, I., & Macosko, C. W. (2018). Influence of rheology and surface properties on morphology of nanofibers derived from islands-in-the-sea meltblown nonwovens. Polymer, 145, 21–30. https://doi.org/10.1016/j.polymer.2018.04.051

Song, Z., Wang, X., Zhu, G., Nian, Q., Zhou, H., Yang, D., Qin, C., & Tang, R. (2015). Virus Capture and Destruction by Label-Free Graphene Oxide for Detection and Disinfection Applications. Small, 11(9–10), 1171–1176. https://doi.org/10.1002/smll.201401706

Spirescu, V. A., Chircov, C., Grumezescu, A. M., Vasile, B. Ștefan, & Andronescu, E. (2021). Inorganic Nanoparticles and Composite Films for Antimicrobial Therapies. International Journal of Molecular Sciences, 22(9), Article 9. https://doi.org/10.3390/ijms22094595

Stepanyan, R., Subbotin, A., Cuperus, L., Boonen, P., Dorschu, M., Oosterlinck, F., & Bulters, M. (2014). Fiber diameter control in electrospinning. Applied Physics Letters, 105(17). https://doi.org/10.1063/1.4900778

Subbiah, T., Bhat, G. S., Tock, R. W., Parameswaran, S., & Ramkumar, S. S. (2005). Electrospinning of nanofibers. Journal of Applied Polymer Science, 96(2), 557–569. https://doi.org/10.1002/app.21481

Takeuchi, H., Trang, V. T., Morimoto, N., Nishida, Y., Matsumura, Y., & Sugiura, T. (2014). Natural products and food components with anti-Helicobacter pylori activities. World Journal of Gastroenterology : WJG, 20(27), 8971–8978. https://doi.org/10.3748/wjg.v20.i27.8971

Tavassoli-Kafrani, E., Goli, S. A. H., & Fathi, M. (2017). Fabrication and characterization of electrospun gelatin nanofibers crosslinked with oxidized phenolic compounds. International Journal of Biological Macromolecules, 103, 1062–1068. https://doi.org/10.1016/J.IJBIOMAC.2017.05.152

Tessarolo, F., Nollo, G., Benedetti, L., Helfer, F., Rovati, L., Ferrari, A., Marchetti, G., Reverberi, F., Baglio, S., Tuccitto, N., Stefani, S., Stracquadanio, S., Caraci, F., Terrasi, A., Tricomi, A., Musumeci, M., Miraglia, A., Cuttone, G., Cosentino, S., … Paone, N. (2022). Measuring breathability and bacterial filtration efficiency of face masks in the pandemic context: A round robin study with proficiency testing among non-accredited laboratories. Measurement: Journal of the International Measurement Confederation, 189, 110481. https://doi.org/10.1016/j.measurement.2021.110481

Thakur, R., Das, D., & Das, A. (2013). Electret air filters. Separation and Purification Reviews, 42(2), 87–129. https://doi.org/10.1080/15422119.2012.681094

Tortella, G. R., Pieretti, J. C., Rubilar, O., Fernández-Baldo, M., Benavides-Mendoza, A., Diez, M. C., & Seabra, A. B. (2022). Silver, copper and copper oxide nanoparticles in the fight against human viruses: Progress and perspectives. Critical Reviews in Biotechnology, 42(3), 431–449. https://doi.org/10.1080/07388551.2021.1939260

Tseng, C. C., Pan, Z. M., & Chang, C. H. (2016). Application of a quaternary ammonium agent on surgical face masks before use for pre-decontamination of nosocomial infection-related bioaerosols. Aerosol Science and Technology, 50(3), 199–210. https://doi.org/10.1080/02786826.2016.1140895

Tuñón-Molina, A., Takayama, K., Redwan, E. M., Uversky, V. N., Andrés, J., & Serrano-Aroca, Á. (2021). Protective Face Masks: Current Status and Future Trends. ACS Applied Materials & Interfaces, 13(48), 56725–56751. https://doi.org/10.1021/acsami.1c12227

Umar, Y., Al-Batty, S., Rahman, H., Ashwaq, O., Sarief, A., Sadique, Z., Sreekumar, P. A., & Haque, S. K. M. (2021). Polymeric Materials as Potential Inhibitors Against SARS-CoV-2. Journal of Polymers and the Environment 2021 30:4, 30(4), 1244–1263. https://doi.org/10.1007/S10924-021-02272-6

Uppal, R., Bhat, G., Eash, C., & Akato, K. (2013). Meltblown nanofiber media for enhanced quality factor. Fibers and Polymers, 14(4), 660–668. https://doi.org/10.1007/s12221-013-0660-z

Urnukhsaikhan, E., Bold, B.-E., Gunbileg, A., Sukhbaatar, N., & Mishig-Ochir, T. (2021). Antibacterial activity and characteristics of silver nanoparticles biosynthesized from Carduus crispus. Scientific Reports, 11(1), Article 1. https://doi.org/10.1038/s41598-021-00520-2

Valdez-Salas, B., Beltran-Partida, E., Cheng, N., Salvador-Carlos, J., Valdez-Salas, E. A., Curiel-Alvarez, M., & Ibarra-Wiley, R. (2021). Promotion of Surgical Masks Antimicrobial Activity by Disinfection and Impregnation with Disinfectant Silver Nanoparticles. International Journal of Nanomedicine, 16, 2689–2702. https://doi.org/10.2147/IJN.S301212

Vasconcelos, N. G., Croda, J., & Simionatto, S. (2018). Antibacterial mechanisms of cinnamon and its constituents: A review. Microbial Pathogenesis, 120, 198–203. https://doi.org/10.1016/j.micpath.2018.04.036

Wang, W., Chen, T., Li, Z., Tan, Q., Meng, Z., Qiu, H., Liu, X., & Zheng, J. (2022). Comparison of filtration efficiency and respiratory resistance of COVID-19 protective masks by multi-national standards. American Journal of Infection Control, 50(5), 516–524. https://doi.org/10.1016/j.ajic.2022.02.009

WHO Coronavirus (COVID-19) Dashboard. (2023, April 5). https://covid19.who.int

Whyte, H. E., Montigaud, Y., Audoux, E., Verhoeven, P., Prier, A., Leclerc, L., Sarry, G., Laurent, C., Le Coq, L., Joubert, A., & Pourchez, J. (2022). Comparison of bacterial filtration efficiency vs. Particle filtration efficiency to assess the performance of non-medical face masks. Scientific Reports 2022 12:1, 12(1), 1–8. https://doi.org/10.1038/s41598-022-05245-4

Yan, Y. (2016). 2—Developments in fibers for technical nonwovens. In G. Kellie (Ed.), Advances in Technical Nonwovens (pp. 19–96). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100575-0.00002-4

Yu, M. S., Lee, J., Lee, J. M., Kim, Y., Chin, Y. W., Jee, J. G., Keum, Y. S., & Jeong, Y. J. (2012). Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorganic and Medicinal Chemistry Letters, 22(12), 4049–4054. https://doi.org/10.1016/j.bmcl.2012.04.081

Zhang, H., Liu, N., Zeng, Q., Liu, J., Zhang, X., Ge, M., Zhang, W., Li, S., Fu, Y., & Zhang, Y. (2020). Design of polypropylene electret melt blown nonwovens with superior filtration efficiency stability through thermally stimulated charging. Polymers, 12(10), 1–13. https://doi.org/10.3390/polym12102341

Zhao, P., Wang, R., Xiang, J., Zhang, J., Wu, X., Chen, C., & Liu, G. (2023). Antibacterial, antiviral, and biodegradable collagen network mask for effective particulate removal and wireless breath monitoring. Journal of Hazardous Materials, 456, 131654. https://doi.org/10.1016/j.jhazmat.2023.131654

Zhao, Y., Low, Z.-X., Feng, S., Zhong, Z., Wang, Y., & Yao, Z. (2017). Multifunctional hybrid porous filters with hierarchical structures for simultaneous removal of indoor VOCs, dusts and microorganisms. Nanoscale, 9(17), 5433–5444. https://doi.org/10.1039/C6NR09779K

Zheng, J., & Suh, S. (2019). Strategies to reduce the global carbon footprint of plastics. Nature Climate Change 2019 9:5, 9(5), 374–378. https://doi.org/10.1038/s41558-019-0459-z

Zhou, C., Wang, F., Chen, H., Li, M., Qiao, F., Liu, Z., Hou, Y., Wu, C., Fan, Y., Liu, L., Wang, S., & Wang, Y. (2016). Selective Antimicrobial Activities and Action Mechanism of Micelles Self-Assembled by Cationic Oligomeric Surfactants. ACS Applied Materials & Interfaces, 8(6), 4242–4249. https://doi.org/10.1021/acsami.5b12688

Zhou, Y. ;, Liu, Y. ;, Zhang, M. ;, Feng, Z. ;, Yu, D.-G. ;, Wang, K., Arias, J. L., Scherf, U., El-Hammadi, M. M., Zhou, Y., Liu, Y., Zhang, M., Feng, Z., Yu, D.-G., & Wang, K. (2022). Electrospun Nanofiber Membranes for Air Filtration: A Review. Nanomaterials 2022, Vol. 12, Page 1077, 12(7), 1077. https://doi.org/10.3390/NANO12071077

Zia, R., Riaz, M., Farooq, N., Qamar, A., & Anjum, S. (2018). Antibacterial activity of Ag and Cu nanoparticles synthesized by chemical reduction method: A comparative analysis. Materials Research Express, 5(7), 075012. https://doi.org/10.1088/2053-1591/aacf70

Rahman, M. Z., Hoque, M. E., Alam, M. R., Rouf, M. A., Khan, S. I., Xu, H., & Ramakrishna, S. (2022). Face Masks to Combat Coronavirus (COVID-19)—Processing, Roles, Requirements, Efficacy, Risk and Sustainability. Polymers, 14(7), 1296. https://doi.org/10.3390/polym14071296

Published
2023-12-28
How to Cite
Hoque, M. E., Sarker , M. A., Arif, K., Ali, M. A., & El-Bialy, T. (2023). Antibacterial/Antiviral Face Masks: Processing, Characteristics, Challenges, and Sustainability. MIST INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY, 11(2), 61-79. https://doi.org/10.47981/j.mijst.11(02)2023.421(61-79)
Section
ARTICLES