Deposition of Steel over Steel by Friction Surfacing Technique and Investigation of its Physical Geometry
Abstract
Friction surfacing (FS) is a coating technique inspired by friction stir welding. FS is a solid-state, thermo-mechanical process providing excellent wear and corrosion resistance properties. Frictional heating elevates the temperature of the consumable rotating tool (mechtrode) up to the softening of the material, the tool is traversed along the length of the plate, and the material gets deposited onto the substrate plate with good mechanical properties and excellent corrosion resistance properties, FS process may have wider application in the mining industry to provide an adequate coating on excavator's teeth, shovel teeth, and dragline teeth. This paper has an experimental approach to investigate the coating integrity during the FSed deposition of AISI4140 (consumable rod) over EN24 plate on a conventional milling machine. Various tests like wear test, XRD analysis, hardness, IR thermography, surface roughness, FESEM images have been analysed. Experiments have shown that at a low travel speed of 16mm/min, the coating is non-uniform and an excessive increase in travel speed will not give proper time for softening of the material, resulting in a discontinuous coating so the optimum travel speed must be chosen for better quality coating. Also, one more approach has been made to explore the effect of mechtrode shapes on the flash formation of the consumable tool while deposition of mild steel over mild steel on the milling machine where conical cylinder tool shape was more efficiently worked.
Downloads
References
Aravinda, T., Niranjan, H. B., Satish Babu, B., & Udaya Ravi, M. (2021). Solid State Diffusion Bonding Process-A Review. IOP Conference Series: Materials Science and Engineering, 1013(1).https://doi.org/10.1088/1757 899X/1013/1/012011
Barnabas, G. (2014). Parameters Optimization in Friction Surfacing. Chemical and Materials Engineering, 2(6), 127–136. https://doi.org/10.13189/cme.2014.020601
Dilip, J. J. S., Babu, S., Varadha Rajan, S., Rafi, K. H., Janaki Ram, G., & Stucker, B. E. (2013). Use of friction surfacing for additive manufacturing. Materials and Manufacturing Processes, 28(2), 189–194. https://doi.org/10.1080/10426914.2012.677912
Gandra, J., Krohn, H., Miranda, R. M., Vilaça, P., Quintino, L., & Dos Santos, J. F. (2014). Friction surfacing - A review. In Journal of Materials Processing Technology, 214(5), 1062–1093). https://doi.org/10.1016/j.jmatprotec.2013.12.008
Gandra, J., Miranda, R. M., & Vilaça, P. (2012). Performance analysis of friction surfacing. Journal of Materials Processing Technology, 212(8), 1676–1686. https://doi.org/10.1016/j.jmatprotec.2012.03.013
Govardhan, D., Kumar, A. C. S., Murti, K. G. K., & Madhusudhan Reddy, G. (2012). Characterization of austenitic stainless steel friction surfaced deposit over low carbon steel. Materials and Design, 36, 206–214. https://doi.org/10.1016/j.matdes.2011.07.040
Guo, D., Kwok, C. T., & Chan, S. L. I. (2019). Spindle speed in friction surfacing of 316L stainless steel – How it affects the microstructure, hardness and pitting corrosion resistance. Surface and Coatings Technology, 361, 324–341. https://doi.org/10.1016/j.surfcoat.2019.01.055
Hanke, S., Sena, I., Coelho, R. S., & dos Santos, J. F. (2018). Microstructural features of dynamic recrystallization in alloy 625 friction surfacing coatings. Materials and Manufacturing Processes, 33(3), 270–276. https://doi.org/10.1080/10426914.2017.1291947
Jaspal Singh, S., Kishore, K., Laxminarayana, P., & Parshuramulu, A. (2023). Investigation of micro structural and mechanical properties of friction surfacing on low carbon steel by using stainless steel grades. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2023.04.540
Kallien, Z., Rath, L., Roos, A., & Klusemann, B. (2020). Experimentally established correlation of friction surfacing process temperature and deposit geometry. Surface and Coatings Technology, 397(June), 126040. https://doi.org/10.1016/j.surfcoat.2020.126040
Nixon, R. G. S., Mohanty, B. S., & Bhaskar, G. B. (2018). Effect of process parameters on physical measurements of AISI316 stainless steel coating on EN24 in friction surfacing. Materials and Manufacturing Processes, 33(7), 778–785. https://doi.org/10.1080/10426914.2017.1388524
Padmavathi, G., Sarada, B. N., Shanmuganathan, S. P., Krishnamurthy, R., & Padmini, B. V. (2021). Investigation of HVOF processed carbide based coating on AISI-4340. AIP Conference Proceedings, 2317. https://doi.org/10.1063/5.0036544
Pereira, D., Gandra, J., Pamies-Teixeira, J., Miranda, R. M., & Vilaça, P. (2014). Wear behaviour of steel coatings produced by friction surfacing. Journal of Materials Processing Technology, 214(12), 2858–2868. https://doi.org/10.1016/j.jmatprotec.2014.06.003
Puli, R., & Janaki Ram, G. D. (2012). Dynamic recrystallization in friction surfaced austenitic stainless steel coatings. Materials Characterization, 74, 49–54. https://doi.org/10.1016/j.matchar.2012.09.001
Raju, V. P., Manzoor Hussain, M., & Govardhan, D. (2016). Effect of process parameters on the width of friction surfaced tool steel M2 deposit over low carbon steel. In International Journal of Materials Science, 11(1). http://www.ripublication.com
Rao, K. P., Sankar, A., Rafi, H. K., Ram, G. D. J., & Reddy, G. M. (2013). Friction surfacing on nonferrous substrates: A feasibility study. International Journal of Advanced Manufacturing Technology, 65(5–8), 755–762. https://doi.org/10.1007/s00170-012-4214-0
Rethnam, G. S. N., Manivel, S., Sharma, V. K., Srinivas, C., Afzal, A., Abdul Razak, R. K., Alamri, S., & Saleel, C. A. (2021). Parameter study on friction surfacing of aisi316ti stainless steel over en8 carbon steel and its effect on coating dimensions and bond strength. Materials, 14(17). https://doi.org/10.3390/ma14174967
Sahoo, D. K., Bharath, R., & Saqlain, Z. S. (2020). Influence of process parameters during the friction surfaced deposition of inconel 718 over AISI 1045 carbon steel substrate. AIP Conference Proceedings, 2311. https://doi.org/10.1063/5.0034547
Sahoo, D. K., & Mohanty, B. S. (2019). Evaluation of bond strength on deposition of aluminium 6063 alloy over EN24 medium carbon steel by friction surfacing using different mechtrode diameter. E-Journal of Surface Science and Nanotechnology, 17, 83–94. https://doi.org/10.1380/ejssnt.2019.83
Sahu, J. K., Krupp, U., Ghosh, R. N., & Christ, H. J. (2009). Effect of 475 °C embrittlement on the mechanical properties of duplex stainless steel. Materials Science and Engineering A, 508(1–2), 1–14. https://doi.org/10.1016/j.msea.2009.01.039
Seidi, E., Miller, S. F., & Carlson, B. E. (2021). Friction Surfacing Deposition by Consumable Tools. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 143(12). https://doi.org/10.1115/1.4050924
Siddesh Kumar, N. M., Chethan, S., Nikhil, T., & Dhruthi. (2022). A review on friction stir processing over other surface modification processing techniques of magnesium alloys. Functional Composites and Structures, 4(1). https://doi.org/10.1088/2631-6331/ac49f3
Sugandhi, V., & Ravishankar, V. (2012). Optimization of Friction Surfacing Process Parameters for AA1100 Aluminum Alloy Coating with Mild Steel Substrate Using Response Surface Methodology (RSM) Technique. Modern Applied Science, 6(2), 69–80. ttps://doi.org/10.5539/mas.v6n2p69
MIJST follows the open access policy.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. This allows anyone to copy, share, distribute, and modify the work for non-commercial purposes, where the original work and source should be properly credited.