Physical, Mechanical, and Durability Properties of Concrete with Class F Fly Ash

  • Md Jahidul Islam Department of Civil Engineering, Military Institute of Science and Technology, Dhaka, Bangladesh
  • Tasnia Ahmed Department of Civil Engineering, Military Institute of Science and Technology, Dhaka, Bangladesh
  • Md Riadus Salehin Department of Civil Engineering, Military Institute of Science and Technology, Dhaka, Bangladesh
  • Mohammad Sadman Sakib Department of Civil Engineering, Military Institute of Science and Technology, Dhaka, Bangladesh
  • Md Shakil Shariar Department of Civil Engineering, Military Institute of Science and Technology, Dhaka, Bangladesh
  • Monowar Hossain Department of Civil Engineering, Military Institute of Science and Technology, Dhaka, Bangladesh
Keywords: Class F fly ash, Microstructure, Splitting tensile strength, Modulus of elasticity, Durability properties

Abstract

Concrete is one of the most used manufactured materials in the world. Fly ash (FA) is a byproduct produced from pulverized coal combustion in power generation. A total of 0.08 million tons of class F fly ash is produced from a coal-based power plant yearly in Barapukuria, Bangladesh, whose disposal is of a great issue. Therefore, this study aims to explore the possibility of using class F FA in concrete construction as a supplementary cementitious material. In this study, two different water-to-cement ratios (0.4 and 0.5), each with five cement replacement levels numerically, 0%, 10%, 20%, 30%, and 40% with FA are used. Various tests are performed on cylinder and beam specimens to assess physical, mechanical, and durability properties, such as workability, density, compressive strength (CS), splitting tensile strength (STS), flexural strength (FS), chloride ion penetrability (CIP), and shrinkage. Analyzing the results, it is reported that workability increases and density decreases with the increasing FA replacement. Mechanical properties mostly decrease with increasing FA content. However, the strength gained with age is higher for concrete with FA compared to the control concrete. The CIP reduces with FA replacement, especially at 56 days of age. Shrinkage value reduces 82% at 40% replacement FA replacement and w/c ratio 0.4. However, at 10% FA replacement and concrete age of 56 days, mechanical strength loss is infinitesimal or even better compared to the control concrete. Thus, a low replacement percentage of FA with a high curing period is a suitable concrete cement alternative.

Downloads

Download data is not yet available.

References

AASHTO TP 95. (2014). Standard Method of Test for Surface Resistivity Indication of Concrete’s Ability to Resist Chloride Ion Penetration. AASHTO Annual Meeting, Orlando, FL.

ACI 116R. (2000). Cement and Concrete Terminology. American Concrete Institute, Farmington Hills, MI.

ACI 211.1-91. (1994). Standard Practice of Selecting Proportions for Normal, Heavy-weight, and Mass Concrete. American Concrete Institute, Farmington Hills, MI.

ACI 225R. (2016). Guide to the Selection and Use of Hydraulic Cements American Concrete Institute, Farmington Hills, MI.

ACI 318-14. (2014). Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute, Farmington Hills, MI.

ACI 363R. (2010). Report on High-Strength Concrete. American Concrete Institute, Farmington Hills, MI.

Ahmaruzzaman, M. (2010). A review on the utilization of fly ash. Progress in Energy and Combustion Science, 36(3), 327-363. doi:https://doi.org/10.1016/j.pecs.2009.11.003

Amiri, A., Olfati, A., Najjar, S., Beiranvand, P., & Fard, M. H. (2016). THE EFFECT OF FLY ASH ON FLEXURAL CAPACITY CONCRETE BEAMS. Advances in Science and Technology Research Journal, 10, 89-95. doi:10.12913/22998624/62630

Andrew, R. (2018). Global CO2 Emissions from Cement Production. Earth System Science Data Discussions, 1-61. doi:10.5194/essd-2018-90

AS 3600. (2009). Concrete Structures: Design Properties of materials. Australian Standard, Australia.

ASTM C29. (2021). Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate. ASTM International, West Conshohocken, PA.

ASTM C33. (2018). Standard Specification for Concrete Aggregates. ASTM International, West Conshohocken, PA.

ASTM C78. (2022). Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). ASTM International, West Conshohocken, PA.

ASTM C109. (2020). Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International, West Conshohocken, PA.

ASTM C127. (2015). Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. ASTM International, West Conshohocken, PA.

ASTM C128. (2015). Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate. ASTM International, West Conshohocken, PA.

ASTM C136. (2014). Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. ASTM International, West Conshohocken, PA.

ASTM C150. (2021). Standard Specification for Portland Cement. ASTM International, West Conshohocken, PA.

ASTM C187. (2016). Standard Test Method for Amount of Water Required for Normal Consistency of Hydraulic Cement Paste. ASTM International, West Conshohocken, PA.

ASTM C188. (2017). Standard Test Method for Density of Hydraulic Cement. ASTM International, West Conshohocken, PA.

ASTM C191. (2021). Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle. ASTM International, West Conshohocken, PA.

ASTM C618. (2019). Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International, West Conshohocken, PA.

ASTM C1202. (2021). Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. ASTM International, West Conshohocken, PA.

Babor, D., Plian, D., & Judele, L. (2009). Environmental Impact of Concrete. Bulletin of the Polytechnic Institute of Jassy, CONSTRUCTIONS. ARCHITECTURE Section, Tomme LV (LIX), Fascicle 4, pages 27-36 (2009), LV (LIX).

Barcelo, L., Kline, J., Walenta, G., & Gartner, E. (2014). Cement and carbon emissions. Materials and Structures, 47(6), 1055-1065. doi:10.1617/s11527-013-0114-5

Breeze, P. (2015). Chapter 1 - An Introduction to Coal-Fired Power Generation. In P. Breeze (Ed.), Coal-Fired Generation (pp. 1-7). Boston: Academic Press.

Chindaprasirt, P., Homwuttiwong, S., & Sirivivatnanon, V. (2004). Influence of fly ash fineness on strength, drying shrinkage and sulfate resistance of blended cement mortar. Cement and Concrete Research, 34(7), 1087-1092. doi:https://doi.org/10.1016/j.cemconres.2003.11.021

Chindasiriphan, P., Yokota, H., & Pimpakan, P. (2020). Effect of fly ash and superabsorbent polymer on concrete self-healing ability. Construction and Building Materials, 233, 116975. doi:10.1016/j.conbuildmat.2019.116975

Chinh, N. (2021). Flexural performance of reinforced concrete beams made with locally sourced fly ash. Journal of Science and Technology in Civil Engineering (STCE) - NUCE, 15, 38-50. doi:10.31814/stce.nuce2021-15(2)-04

CSA A23.3-14. (2014). Design of Concrete Structures. Canadian Standards Association, Canada.

Eurocode 2. (2005). EN 1992-1-1, Design of Concrete Structures – Part 1–1: General Rules and Rules for Buildings. Thomas Telford, London, UK.

Fantu, T., Alemayehu, G., Kebede, G., Abebe, Y., Selvaraj, S. K., & P, V. (2021). Experimental investigation of compressive strength for fly ash on high strength concrete C-55 grade. Materials Today: Proceedings, 46. doi:10.1016/j.matpr.2021.01.213

Feiz, R., Ammenberg, J., Baas, L., Eklund, M., Helgstrand, A., & Marshall, R. (2015). Improving the CO2 performance of cement, part II: framework for assessing CO2 improvement measures in the cement industry. Journal of Cleaner Production, 98, 282-291. doi:https://doi.org/10.1016/j.jclepro.2014.01.103

fib 2010. (2010). fib Model Code for Concrete Structures. International Fedaration for Structural Concrete.

fib. (2010). fib Model Code for Concrete Structures. International Fedaration for Structural Concrete.

Fuzail Hashmi, A., Shariq, M., & Baqi, A. (2020). Flexural performance of high volume fly ash reinforced concrete beams and slabs. Structures, 25, 868-880. doi:https://doi.org/10.1016/j.istruc.2020.03.071

Golewski, G. L. (2018). Green concrete composite incorporating fly ash with high strength and fracture toughness. Journal of Cleaner Production, 172, 218-226. doi:https://doi.org/10.1016/j.jclepro.2017.10.065

Hardjito, D., Wallah, S. E., Sumajouw, D. M. J., & Rangan, B. V. J. A. M. J. (2004). ON THE DEVELOPMENT OF FLY ASH-BASED GEOPOLYMER CONCRETE. ACI Materials Journal, 101, 467-472.

Howladar, M. F., & Islam, M. R. (2016). A study on physico-chemical properties and uses of coal ash of Barapukuria Coal Fired Thermal Power Plant, Dinajpur, for environmental sustainability. Energy, Ecology and Environment, 1(4), 233-247. doi:10.1007/s40974-016-0022-y

Islam, M. J., Ahmed, T., Imam, S. M. F. B., Ifaz, M., & Islam, H. (2022). Flexural and impact behavior of textile reinforced concrete panel. International Journal of Protective Structures, 20414196221095250. doi:10.1177/20414196221095250

Islam, M. J., Borsha, N. T., Meghna, N. N., & Enam, R. B.-t. (2023, 2023//). Mechanical and Durability Properties of Fly Ash Blended Concrete with Gi Fiber. Paper presented at the Proceedings of the Canadian Society of Civil Engineering Annual Conference 2021, Singapore.

Jamora, J. B., Gudia, S. E. L., Go, A. W., Giduquio, M. B., & Loretero, M. E. (2020). Potential CO2 reduction and cost evaluation in use and transport of coal ash as cement replacement: A case in the Philippines. Waste Management, 103, 137-145. doi:https://doi.org/10.1016/j.wasman.2019.12.026

Jiang, D., Li, X., Lv, Y., Zhou, M., He, C., Jiang, W., Liu, Z., & Li, C. (2020). Utilization of limestone powder and fly ash in blended cement: Rheology, strength and hydration characteristics. Construction and Building Materials, 232, 117228. doi:https://doi.org/10.1016/j.conbuildmat.2019.117228

Jiménez-Quero, V. G., León-Martínez, F. M., Montes-García, P., Gaona-Tiburcio, C., & Chacón-Nava, J. G. (2013). Influence of sugar-cane bagasse ash and fly ash on the rheological behavior of cement pastes and mortars. Construction and Building Materials, 40, 691-701. doi:https://doi.org/10.1016/j.conbuildmat.2012.11.023

Joanna, P. S., Parvati, T. S., Rooby, J., & Preetha, R. (2020). A study on the flexural behavior of sustainable concrete beams with high volume fly ash. Materials Today: Proceedings, 33, 1149-1157. doi:https://doi.org/10.1016/j.matpr.2020.07.343

Khan, M. D. I., Abdy Sayyed, M. A., Yadav, G. S., & Varma, S. H. (2021). The impact of fly ash and structural fiber on the mechanical properties of concrete. Materials Today: Proceedings, 39, 508-512. doi:https://doi.org/10.1016/j.matpr.2020.08.242

Khongpermgoson, P., Boonlao, K., Ananthanet, N., Thitithananon, T., Jaturapitakkul, C., Tangchirapat, W., & Ban, C. C. (2020). The mechanical properties and heat development behavior of high strength concrete containing high fineness coal bottom ash as a pozzolanic binder. Construction and Building Materials, 253, 119239. doi:https://doi.org/10.1016/j.conbuildmat.2020.119239

Koodalloor Parasuraman, R., Siddik, M., & Nazeer, M. (2011). WORKABILITY AND STRENGTH STUDIES ON FLY ASH MODIFIED MASONRY MORTARS.

Lanzerstorfer, C. (2018). Fly ash from coal combustion: Dependence of the concentration of various elements on the particle size. Fuel, 228, 263-271. doi:10.1016/j.fuel.2018.04.136

Laxman Kudva, P., Nayak, G., Shetty, K. K., & Sugandhini, H. K. (2022). A sustainable approach to designing high volume fly ash concretes. Materials Today: Proceedings. doi:https://doi.org/10.1016/j.matpr.2022.04.165

Liu, Z., Takasu, K., Koyamada, H., & Suyama, H. (2022). A study on engineering properties and environmental impact of sustainable concrete with fly ash or GGBS. Construction and Building Materials, 316, 125776. doi:https://doi.org/10.1016/j.conbuildmat.2021.125776

Moghaddam, F., Sirivivatnanon, V., & Vessalas, K. (2019). The effect of fly ash fineness on heat of hydration, microstructure, flow and compressive strength of blended cement pastes. Case Studies in Construction Materials, 10, e00218. doi:10.1016/j.cscm.2019.e00218

Nath, P., & Sarker, P. (2011). Effect of Fly Ash on the Durability Properties of High Strength Concrete. Procedia Engineering, 14, 1149-1156. doi:https://doi.org/10.1016/j.proeng.2011.07.144

Neville, A. M. (2016). Properties of Concrete (Fifth ed.): Pearson.

Oner, A., Akyuz, S., & Yildiz, R. (2005). An experimental study on strength development of concrete containing fly ash and optimum usage of fly ash in concrete. Cement and Concrete Research, 35(6), 1165-1171. doi:https://doi.org/10.1016/j.cemconres.2004.09.031

Promsawat, P., Chatveera, B., Sua-iam, G., & Makul, N. (2020). Properties of self-compacting concrete prepared with ternary Portland cement-high volume fly ash-calcium carbonate blends. Case Studies in Construction Materials, 13, e00426. doi:https://doi.org/10.1016/j.cscm.2020.e00426

S. L. Sarkar, A. K. D. K. D., & Banerjee, G. (1995). Utilization of Fly Ash in the Development of a Cost-Effective Cementitious Product. ACI Symposium Publication, 153. doi:10.14359/1082

Saha, A. K. (2018). Effect of class F fly ash on the durability properties of concrete. Sustainable Environment Research, 28(1), 25-31. doi:https://doi.org/10.1016/j.serj.2017.09.001

Shang, J., Zhao, K., Zhang, P., Guo, W., & Zhao, T. (2021). Flexural behavior of plain concrete beams containing strain hardening cementitious composite layers with High-Volume fly ash. Construction and Building Materials, 286, 122867. doi:https://doi.org/10.1016/j.conbuildmat.2021.122867

Soni, R., Bhardwaj, S., & Shukla, D. P. (2020). Chapter 14 - Various water-treatment technologies for inorganic contaminants: current status and future aspects. In P. Devi, P. Singh, & S. K. Kansal (Eds.), Inorganic Pollutants in Water (pp. 273-295): Elsevier.

Sun, J., Jin, N., Tian, Y., & Jin, X. (2012). Experiment Study on Capillary Absorption of Fly Ash Concrete at Different Curing Ages. Advanced Materials Research, 450-451, 78-81. doi:10.4028/scientific5/AMR.450-451.78

Thomas, M. (2007). Optimizing the use of fly ash in concrete. Journal of Materials Science and Chemical Engineering, 5.

Thomas, M., Jewell, R., & Jones, R. (2017). 5 - Coal fly ash as a pozzolan. In T. Robl, A. Oberlink, & R. Jones (Eds.), Coal Combustion Products (CCP's) (pp. 121-154): Woodhead Publishing.

Vimonsatit, S., Chindaprasirt, P., Ruangsiriyakul, S., & Sata, V. (2015). Influence of fly ash fineness on water requirement and shrinkage of blended cement mortars. KKU Engineering Journal, 42. doi:10.14456/kkuenj.2015.37

Wang, A., Zhang, C., & Sun, W. (2004). Fly ash effects: III. The microaggregate effect of fly ash. Cement and Concrete Research, 34(11), 2061-2066. doi:https://doi.org/10.1016/j.cemconres.2003.03.002

Wei, Y., Chai, J., Qin, Y., Li, Y., Xu, Z., Li, Y., & Ma, Y. (2021). Effect of fly ash on mechanical properties and microstructure of cellulose fiber-reinforced concrete under sulfate dry–wet cycle attack. Construction and Building Materials, 302, 124207. doi:https://doi.org/10.1016/j.conbuildmat.2021.124207

Yao, Z. T., Ji, X. S., Sarker, P. K., Tang, J. H., Ge, L. Q., Xia, M. S., & Xi, Y. Q. (2015). A comprehensive review on the applications of coal fly ash. Earth-Science Reviews, 141, 105-121. doi:10.1016/j.earscirev.2014.11.016

Yoo, S.-W., Ryu, G.-S., & Choo, J. F. (2015). Evaluation of the effects of high-volume fly ash on the flexural behavior of reinforced concrete beams. Construction and Building Materials, 93, 1132-1144. doi:https://doi.org/10.1016/j.conbuildmat.2015.05.021

Yu, Z., Ma, J., Ye, G., Breugel, K., & Shen, X. (2017). Effect of fly ash on the pore structure of cement paste under a curing period of 3 years. Construction and Building Materials, 144, 493-501. doi:10.1016/j.conbuildmat.2017.03.182

Zierold, K., & Odoh, C. (2020). A review on fly ash from coal-fired power plants: chemical composition, regulations, and health evidence. Reviews on environmental health, -1. doi:10.1515/reveh-2019-0039

Published
2023-12-28
How to Cite
Islam, M. J., Ahmed, T., Salehin, M. R., Sakib, M. S., Shariar, M. S., & Hossain, M. (2023). Physical, Mechanical, and Durability Properties of Concrete with Class F Fly Ash. MIST INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY, 11(2), 27-41. https://doi.org/10.47981/j.mijst.11(02)2023.430(27-41)
Section
ARTICLES